关闭

二叉树中两个节点的最低公共祖先

标签: 二叉树最低公共祖先
106人阅读 评论(0) 收藏 举报
分类:

1、如果此二叉树为二叉搜索树,即树中所有结点的左子树的结点都比父结点小,所有结点的右子树都比父结点大

  对于此种情况,我们只需从树的根结点开始和输入的两个结点进行比较。如果当前结点的值比两个结点的值都大,那么最低的共同父结点一定是在当前结点的左子树中,于是下一步遍历当前结点的左子结点;如果当前结点的值比两个结点的值都小,那么最低的共同父结点一定是在当前结点的右子树中,于是下一步遍历当前结点的右子结点。这样在树中从上到下找到第一个在输入结点的值之间的结点,就是最低的公共祖先。

struct BSNode
{
	int _data;
	BSNode* _left;
	BSNode* _right;
	BSNode(int data = 0) :_data(data), _left(NULL), _right(NULL)
	{}
};
BSNode* GetLastCommonParent_1(BSNode* pRoot, BSNode* pNode1, BSNode* pNode2)
{
	if (pRoot == NULL || pNode1 == NULL || pNode2 == NULL)
	{
		return NULL;
	}
	if (pNode1 == pNode2)
	{
		return pNode1;
	}
	BSNode* cur = pRoot;
	while (true)
	{
		if ((cur->_data >= pNode1->_data&&cur->_data<=pNode2->_data) ||
		(cur->_data>=pNode2->_data&&cur->_data <= pNode1->_data))
			return cur;
		else if (cur->_data>pNode1->_data)
		{
			cur = cur->_left;
		}
		else
		{
			cur = cur->_right;
		}
	}
	return NULL;
}

2、如果此树是含有父结点的二叉树

对于此种情况,可以转化为求两个链表的第一个公共结点。假设树结点中指向父结点的指针是_parent,那么从树每一结点开始都有一个由_parent串起来的链表,这些链表的尾指针都是根结点。输入两个结点,那么这两个结点位于两个链表上,它们的最低公共祖先刚好就是这两个链表的第一个公共结点。

struct BinTreePar
{
	int _data;
	BinTreePar* _left;
	BinTreePar* _right;
	BinTreePar* _parent;
	BinTreePar(int data = 0) :_data(data), _left(NULL), _right(NULL), _parent(NULL)
	{}
};
//求到根结点的路径长度
int BinLen(BinTreePar* pRoot, BinTreePar* pNode)
{
	int count = 0;
	BinTreePar* cur = pNode;
	while (cur != pRoot)
	{
		++count;
		cur = cur->_parent;
	}
	return count;
}
BinTreePar* GetLastCommonParent_2(BinTreePar* pRoot, BinTreePar* pNode1, BinTreePar* pNode2)
{
	if (pRoot == NULL || pNode1 == NULL || pNode2 == NULL)
	{
		return NULL;
	}
	if (pNode1 == pNode2)
	{
		return pNode1;
	}
	//类似相交单链表找相遇点
	BinTreePar* curA = pNode1;
	BinTreePar* curB = pNode2;

	//计算到根节点的距离
	int lenA = BinLen(pRoot, pNode1);
	int lenB = BinLen(pRoot, pNode2);
	int subLen = lenA - lenB;
	if (subLen > 0)
	{
		while (subLen--)
		{
			curA = curA->_parent;
		}
	}
	else if (subLen < 0)
	{
		while (subLen++)
		{
			curB = curB->_parent;
		}
	}
	while (curA != curB)
	{
		curA = curA->_parent;
		curB = curB->_parent;
	}
	return curA;
}
3、此树是普通的二叉树
      对于此种情况,我们需找到从根节点到输入的两个的路径,然后有辅助的内存来保存路径,然后再从这两条路径中找出最后一个相同的结点。

#include <list>
struct BinTree
{
	int _data;
	BinTree* _left;
	BinTree* _right;
	BinTree(int data = 0) :_data(data), _left(NULL), _right(NULL)
	{}
};
//寻找路径
bool FindRoot(BinTree* pRoot, BinTree* pNode, list<BinTree*>& listRoot)
{
	if (pRoot == NULL || pNode == NULL)
	{
		return true;
	}
	listRoot.push_back(pRoot);
	if (pRoot == pNode)
	{
		return true;
	}
	if (pRoot->_left)
	{
		bool ret = FindRoot(pRoot->_left, pNode, listRoot);
		if (ret)
		{
			return true;
		}
	}
	if (pRoot->_right)
	{
		bool ret = FindRoot(pRoot->_right, pNode, listRoot);
		if (ret)
		{
			return true;
		}
	}
	listRoot.pop_back();
}
BinTree* GetLastCommonParent_3(BinTree* pRoot, BinTree* pNode1, BinTree* pNode2)
{
	//找到由根节点到pNode1、pNode2的路径,再找最后一个相同的结点,用list保存路径
	if (pRoot == NULL || pNode1 == NULL || pNode2 == NULL)
	{
		return NULL;
	}
	if (pNode1 == pNode2)
	{
		return pNode1;
	}
	list<BinTree*> listRoot1;
	list<BinTree*> listRoot2;
	FindRoot(pRoot, pNode1, listRoot1);
	FindRoot(pRoot, pNode2, listRoot2);
	list<BinTree*>::iterator iteA = listRoot1.begin();
	list<BinTree*>::iterator iteB = listRoot2.begin();
	BinTree* ret = listRoot1.front();
	list<BinTree*>::iterator end = listRoot1.end();
	
	while (iteA != listRoot1.end() && iteB != listRoot2.end() && (*iteA)->_data == (*iteB)->_data)
	{
		ret = *iteA;
		++iteA;
		++iteB;
	}
	return ret;
}




0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:17587次
    • 积分:319
    • 等级:
    • 排名:千里之外
    • 原创:48篇
    • 转载:2篇
    • 译文:0篇
    • 评论:0条
    文章分类