最短路径问题

最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。 算法具体的形式包括:

  1. 确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题。
  2. 确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
  3. 确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径。
  4. 全局最短路径问题 - 求图中所有的最短路径。

用于解决最短路径问题的算法被称做“最短路径算法”, 有时被简称作“路径算法”。

注:以下的Dijkstra和Bellman-Ford算法中都使用了松弛 操作。

单源最短路径算法中使用了松弛(relaxation) 操作。对于每个顶点v∈V,都设置一个属性d[v],用来描述从源点s到v的最短路径上权值的上界,称为最短路径估计(shortest-path estimate) 。π[v]代表S到v的当前最短路径中v点之前的一个点的编号,我们用下面的Θ(V)时间的过程来对最短路径估计和前趋进行初始化。

INITIALIZE-SINGLE-SOURCE(G,s)
1   for each vertex v∈V[G]
2      do d[v]←∞
3         π[v]←NIL
4   d[s]←0

经过初始化以后,对所有v∈V,π[v]=NIL,对v∈V-{s},有d[s]=0以及d[v]=∞。
在松弛一条边(u,v)的过程中,要测试是否可以通过u,对迄今找到的v的最短路径进行改进;如果可以改进的话,则更新d[v]和π[v]。一次松弛操作可以减小最短路径估计的值d[v],并更新v的前趋域π[v](S到v的当前最短路径中v点之前的一个点的编号)。下面的伪代码对边(u,v)进行了一步松弛操作

RELAX(u, v, w)
1   if(d[v]>d[u]+w(u,v))
2      then d[v]←d[u]+w(u,v)
3           π[v]←u

 

每个单源最短路径算法中都会调用INITIALIZE-SINGLE-SOURCE,然后重复对边进行松弛的过程。另外,松弛是改变最短路径和前趋 的唯一方式。各个单源最短路径算法间区别在于对每条边进行松弛操作的次数,以及对边执行松弛操作的次序有所不同。在Dijkstra算法以及关于有向无回 路图的最短路径算法中,对每条边执行一次松弛操作。在Bellman-Ford算法中,每条边要执行多次松弛操作。

顺带提一句,松弛操作的不等式与差分约束系统 有着密不可分的关联。

Dijkstra算法

详细介绍
Dijkstra复杂度是O(N^2),如果用binary heap 优化可以达到O((E+N)logN),用fibonacci heap 可以优化到O(NlogN+E)
其基本思想是采用贪心法,对于每个节点v[i],维护估计最短路长度最大值,每次取出一个使得该估计值最小的t,并采用与t相连的边对其余点的估计值进行更新,更新后不再考虑t。
在此过程中,估计值单调递减,所以可以得到确切的最短路。

Dijkstra 程序:

  • void Dijkstra(){
  •      for(int i=1;i<=n;i++)
  •       dis[i] = map[1][i];
  •  
  •      int k;
  •      for(int i=1;i<n;i++){
  •       int tmin = maxint;
  •       for(int j=1;j<=n;j++)
  •        if( !used[j] && tmin > dis[j] ){
  •         tmin = dis[j];
  •         k = j;   
  •        }
  •       used[k] = 1;
  •       for(int j=1;j<=n;j++)
  •        if( dis[k] + map[k][j] < dis[j] )
  •         dis[j] = dis[k] + map[k][j];
  •      }
  •      printf("%d",dis[n]);
  • }
  •  
  • /* 求1到N的最短路,dis[i] 表示第i个点到第一个点的最短路 By Ping*/

Floyd-Warshall算法

详细介绍
Floyd是计算每对点间最短路径(APSP)的经典算法。
时间复杂度是雷打不动的O(n^3)

  • for(int k=1;k<=n;k++)
  • for(int i=1;i<=n;i++)
  • for(int j=1;j<=n;j++){
  • if( map[i][k] != maxint && map[k][j] != maxint )
  • if( map[i][k] + map[k][j] < map[i][j] )
  • map[i][j] = map[i][k] + map[k][j];
  • }
  • /* maxint 为极大值 表示不连通 By Ping ^.^ */

 

 Bellman-Ford算法

详细介绍
Bellman-Ford主要是用于负权图。Bellman-Ford算法即标号修正算法。
实践中常用到的方法通常是FIFO标号修正算法和一般标号修正算法的Dequeue实现。
前者最坏时间复杂度是O(nm), 是解决任意边权的单源最短路经问题的最优强多项式算法。
也可以用这个算法判断是否存在负权回路.

SPFA就是bellmanford的一种实现方式。
SPFA算法就是上面说的FIFO标号修正算法, 请参见《网络流:理论、算法与应用》。


SPFA程序:

  • void spfa()
  • {
  •      int t,p;
  •      queue[cl] = 1;
  •      while( cl < op ){
  •       int p = queue[cl++];
  •       for(t=head[p][0]; t!=0; t=list[t].next ){
  •        if( way[p] != maxint && way[p] + list[t].w < way[list[t].r] ){
  •         way[list[t].r] = way[p] + list[t].w;
  •         queue[op++] = list[t].r;
  •        }
  •       }
  •      }
  •      printf("%d",way[n]);
  • }
  •  
  •  
  • /* queue为优先队列,链表存图(list) by Ping ^.^ */

Johnson算法

详细介绍

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值