实用类之一-----最小堆的实现

原创 2006年05月28日 11:01:00

MinHeap.h文件

template<class T>
class MinHeap{
 public:
  MinHeap(T a[],int n);
  MinHeap(int ms);
  ~MinHeap();
  bool Insert(const T &x);//插入一个元素,如果空返回false,否则返回true
     bool RemoveMin(T &x);//删除最小的元素,如果空返回false,否则返回true
  void MakeEmpty();//使堆为空
  bool IsEmpty();
  bool IsFull();
  void FilterDown(const int start,const int endOfHeap);//自顶向下构造堆
  void FilterUp(const int start);//自底向上构造堆
 private:
  T *heap;
  int maxSize;
  const int defaultSize;
  int currentSize;
};
template<class T>
MinHeap<T>::MinHeap(int ms):defaultSize(100){
 maxSize = ms > defaultSize ? ms : defaultSize;
 heap = new T[maxSize];
 currentSize = 0;
}
template<class T>
MinHeap<T>::MinHeap(T a[],int n):defaultSize(100){
 maxSize = n > defaultSize ? n : defaultSize;
 heap = new T[maxSize];
 currentSize = n;
   heap = a;
 int curPos = (currentSize - 2) / 2;
 while(curPos >= 0){
   FilterDown(curPos,currentSize - 1);
   curPos--;
 }
}
template<class T>
MinHeap<T>::~MinHeap(){
 delete []heap;
}
template<class T>
void MinHeap<T>::FilterDown(const int start,const int endOfHeap){
 int i = start,j = i * 2 + 1;
 T temp = heap[i];
 while(j <= endOfHeap){
   if(j < endOfHeap && heap[j] > heap[j+1]) j++;
   if(temp < heap[j]) break;
   else{
    heap[i] = heap[j];
    i = j;
    j = 2 * i + 1;
   }
 }
 heap[i] = temp;
}
template<class T>
void MinHeap<T>::FilterUp(const int start){
 int i = start, j = ( i - 1 ) / 2;
 T temp = heap[i];
 while(i > 0){
   if(temp >= heap[j]) break;
   else{
    heap[i] = heap[j];
    i = j;
    j = (i - 1) / 2;
   }
 }
 heap[i] = temp;
}
template<class T>
bool MinHeap<T>::RemoveMin(T &x){
 if(IsEmpty()){
  cerr<<"Heap empty!"<<endl;
  return false;
 }
 x = heap[0];
 heap[0] = heap[currentSize - 1];
 currentSize--;
 FilterDown(0,currentSize-1);
 return true;
}
template<class T>
bool MinHeap<T>::Insert(const T& x){
 if(IsFull()) {
  cerr<<"Heap Full!"<<endl;
        return false;
 }
 heap[currentSize] = x;
 FilterUp(currentSize);
 currentSize++;
 return true;
}
template<class T>
bool MinHeap<T>::IsEmpty(){
  return currentSize == 0;
}
 
template<class T>
bool MinHeap<T>::IsFull(){
  return currentSize == maxSize;
}

template<class T>
void MinHeap<T>::MakeEmpty(){
 currentSize = 0
}

main.cpp测试文件:

#include<iostream>
#include"MinHeap.h"
using namespace std;

void main(){
 int a[5] = {3,2,1,4,5};
    MinHeap<int> m_heap(a,5);
 int x,i;
 for(i = 0; i < 5; i++){
   m_heap.RemoveMin(x);
   cout << x << " ";
 }
 cout << endl;

    for(i = 0; i < 5; i++){
    m_heap.Insert(a[i]);
 }

 for(i = 0; i < 5; i++){
   m_heap.RemoveMin(x);
   cout << x << " ";
 }
 cout << endl;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

[数据结构]最小堆的类模板实现

堆数据结构是一种数组对象,它可以被视为一科完全二叉树结构。它的特点是父节点的值大于(小于)两个子节点的值(分别称为最大堆和最小堆)。它常用于管理算法执行过程中的信息,应用场景包括堆排序,优先队列等。1...

最小堆的实现和操作

简单优先队列实现-基于最小堆

一、什么是优先队列优先队列不是按照普通对象先进先出原FIFO则进行数据操作,其中的元素有优先级属性,优先级高的元素先出队。本文提到的优先队列,是基于最小堆原理实现。 二、什么是最小堆最小堆是一个完全二...

算法——TOP K问题最小堆实现扩展

概述上文我们讲到TOP K问题最小堆的实现,采用的比较基本数据类型int。这里我们将扩展到比较对象代码实现这里我们直接上代码,这里的扩展最小堆我们取名为ExMinHeap,实现如下package or...

最小堆 / 优先队列(C语言实现)

最近找实习,复习下数据结构方面的内容:用C语言实现最小堆/优先队列。并通过最小堆求解查找第k大元素的问题。
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)