实用类之二-----最大堆的实现

原创 2006年05月28日 11:12:00

template<class T>
class MaxHeap{
 public:
  MaxHeap(T a[],int n);
  MaxHeap(int ms);
  ~MaxHeap();
  bool Insert(const T &x);//插入一个元素,如果空返回false,否则返回true
     bool RemoveMax(T &x);//删除最小的元素,如果空返回false,否则返回true
  void MakeEmpty();//使堆为空
  bool IsEmpty();
  bool IsFull();

protected:
  void FilterDown(const int start,const int endOfHeap);//自顶向下构造堆
  void FilterUp(const int start);//自底向上构造堆
 private:
  T *heap;
  int maxSize;
  const int defaultSize;
  int currentSize;
};
template<class T>
MaxHeap<T>::MaxHeap(int ms):defaultSize(100){
 maxSize = ms > defaultSize ? ms : defaultSize;
 heap = new T[maxSize];
 currentSize = 0;
}
template<class T>
MaxHeap<T>::MaxHeap(T a[],int n):defaultSize(100){
 maxSize = n > defaultSize ? n : defaultSize;
 heap = new T[maxSize];
 currentSize = n;
 for(int i = 0; i < n; i++)
  heap[i] = a[i];
 int curPos = (currentSize - 2) / 2;
 while(curPos >= 0){
   FilterDown(curPos,currentSize - 1);
   curPos--;
 }
}
template<class T>
MaxHeap<T>::~MaxHeap(){
 delete []heap;
}
template<class T>
void MaxHeap<T>::FilterDown(const int start,const int endOfHeap){
 int i = start,j = i * 2 + 1;
 T temp = heap[i];
 while(j <= endOfHeap){
   if(j < endOfHeap && heap[j] < heap[j+1]) j++;
   if(temp > heap[j]) break;
   else{
    heap[i] = heap[j];
    i = j;
    j = 2 * i + 1;
   }
 }
 heap[i] = temp;
}
template<class T>
void MaxHeap<T>::FilterUp(const int start){
 int i = start, j = ( i - 1 ) / 2;
 T temp = heap[i];
 while(i > 0){
   if(temp <= heap[j]) break;
   else{
    heap[i] = heap[j];
    i = j;
    j = (i - 1) / 2;
   }
 }
 heap[i] = temp;
}
template<class T>
bool MaxHeap<T>::RemoveMax(T &x){
 if(IsEmpty()){
  cerr<<"Heap empty!"<<endl;
  return false;
 }
 x = heap[0];
 heap[0] = heap[currentSize - 1];
 currentSize--;
 FilterDown(0,currentSize-1);
 return true;
}
template<class T>
bool MaxHeap<T>::Insert(const T& x){
 if(IsFull()) {
  cerr<<"Heap Full!"<<endl;
        return false;
 }
 heap[currentSize] = x;
 FilterUp(currentSize);
 currentSize++;
 return true;
}
template<class T>
bool MaxHeap<T>::IsEmpty(){
  return currentSize == 0;
}
 
template<class T>
bool MaxHeap<T>::IsFull(){
  return currentSize == maxSize;
}

template<class T>
void MaxHeap<T>::MakeEmpty(){
 currentSize = 0
}

MainApp.cpp测试文件:

#include<iostream>
#include"MaxHeap.h"
using namespace std;

void main(){
 int a[5] = {3,2,1,4,5};
    MaxHeap<int> m_heap(a,5);
 int x,i;
 for(i = 0; i < 5; i++){
   m_heap.RemoveMax(x);
   cout << x << " ";
 }
 cout << endl;

    for(i = 0; i < 5; i++){
    m_heap.Insert(a[i]);
 }

 for(i = 0; i < 5; i++){
   m_heap.RemoveMax(x);
   cout << x << " ";
 }
 cout << endl;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

最大堆实现knn

  • 2016-07-07 20:10
  • 30KB
  • 下载

[算法学习笔记]基于最大堆实现最大优先队列

何为优先队列 优先队列是计算机科学中的一类抽象数据类型。优先队列中的每个元素都有各自的优先级,优先级最高的元素最先得到服务;优先级相同的元素按照其在优先队列中的顺序得到服务。优先队列往往用堆来实现...

C++实现最大堆的创建

java实现最大堆及代码测试

算法分析: 堆排序和归并排序一样,实践时间复杂度是O(nlgn),不同于归并排序的是,堆排序是一种原址排序。本文介绍最大堆。 代码中关键操作: maxHepify:时间复杂度是O(lgn),是维护堆性...

模板库-最大堆的实现

MinHeap.h /* * MinHeap.h * * Created on: 2011-9-21 * Author: brunie */ #ifndef MINHEAP_...

数据结构实现之最大优先队列(最大堆)

package xwq.dt;import java.util.Comparator; import java.util.Iterator; import java.util.NoSuchElemen...

【算法】最大堆实现排序(从大到小输出)【原创技术】

最大堆实现排序(从大到小输出) 示例输入(11个数,第一个数表示元素个数): 10 0 1 2 3 4 5 6 7 8 9 示例输出: 9 8 7 6 5 4...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)