实用类之二-----最大堆的实现

原创 2006年05月28日 11:12:00

template<class T>
class MaxHeap{
 public:
  MaxHeap(T a[],int n);
  MaxHeap(int ms);
  ~MaxHeap();
  bool Insert(const T &x);//插入一个元素,如果空返回false,否则返回true
     bool RemoveMax(T &x);//删除最小的元素,如果空返回false,否则返回true
  void MakeEmpty();//使堆为空
  bool IsEmpty();
  bool IsFull();

protected:
  void FilterDown(const int start,const int endOfHeap);//自顶向下构造堆
  void FilterUp(const int start);//自底向上构造堆
 private:
  T *heap;
  int maxSize;
  const int defaultSize;
  int currentSize;
};
template<class T>
MaxHeap<T>::MaxHeap(int ms):defaultSize(100){
 maxSize = ms > defaultSize ? ms : defaultSize;
 heap = new T[maxSize];
 currentSize = 0;
}
template<class T>
MaxHeap<T>::MaxHeap(T a[],int n):defaultSize(100){
 maxSize = n > defaultSize ? n : defaultSize;
 heap = new T[maxSize];
 currentSize = n;
 for(int i = 0; i < n; i++)
  heap[i] = a[i];
 int curPos = (currentSize - 2) / 2;
 while(curPos >= 0){
   FilterDown(curPos,currentSize - 1);
   curPos--;
 }
}
template<class T>
MaxHeap<T>::~MaxHeap(){
 delete []heap;
}
template<class T>
void MaxHeap<T>::FilterDown(const int start,const int endOfHeap){
 int i = start,j = i * 2 + 1;
 T temp = heap[i];
 while(j <= endOfHeap){
   if(j < endOfHeap && heap[j] < heap[j+1]) j++;
   if(temp > heap[j]) break;
   else{
    heap[i] = heap[j];
    i = j;
    j = 2 * i + 1;
   }
 }
 heap[i] = temp;
}
template<class T>
void MaxHeap<T>::FilterUp(const int start){
 int i = start, j = ( i - 1 ) / 2;
 T temp = heap[i];
 while(i > 0){
   if(temp <= heap[j]) break;
   else{
    heap[i] = heap[j];
    i = j;
    j = (i - 1) / 2;
   }
 }
 heap[i] = temp;
}
template<class T>
bool MaxHeap<T>::RemoveMax(T &x){
 if(IsEmpty()){
  cerr<<"Heap empty!"<<endl;
  return false;
 }
 x = heap[0];
 heap[0] = heap[currentSize - 1];
 currentSize--;
 FilterDown(0,currentSize-1);
 return true;
}
template<class T>
bool MaxHeap<T>::Insert(const T& x){
 if(IsFull()) {
  cerr<<"Heap Full!"<<endl;
        return false;
 }
 heap[currentSize] = x;
 FilterUp(currentSize);
 currentSize++;
 return true;
}
template<class T>
bool MaxHeap<T>::IsEmpty(){
  return currentSize == 0;
}
 
template<class T>
bool MaxHeap<T>::IsFull(){
  return currentSize == maxSize;
}

template<class T>
void MaxHeap<T>::MakeEmpty(){
 currentSize = 0
}

MainApp.cpp测试文件:

#include<iostream>
#include"MaxHeap.h"
using namespace std;

void main(){
 int a[5] = {3,2,1,4,5};
    MaxHeap<int> m_heap(a,5);
 int x,i;
 for(i = 0; i < 5; i++){
   m_heap.RemoveMax(x);
   cout << x << " ";
 }
 cout << endl;

    for(i = 0; i < 5; i++){
    m_heap.Insert(a[i]);
 }

 for(i = 0; i < 5; i++){
   m_heap.RemoveMax(x);
   cout << x << " ";
 }
 cout << endl;
}

C++实现堆、最大堆、最小堆 -- 堆排序插入删除操作

堆是一种经过排序的完全二叉树,其中任一非终端节点的数据值均不大于(或不小于)其左孩子和右孩子节点的值。 最大堆和最小堆是二叉堆的两种形式。 最大堆:根结点的键值是所有堆结点键值中最大者。 最小堆:根结...

最大堆实现knn

  • 2016年07月07日 20:10
  • 30KB
  • 下载

堆排序原理及算法实现(最大堆)

堆排序是利用堆的性质进行的一种选择排序。

最大堆的完整实现 Visual C++

  • 2010年04月20日 16:16
  • 558KB
  • 下载

C++实现最大堆的创建

  • 2012年11月29日 21:20
  • 2KB
  • 下载

堆排序原理及算法实现(最大堆)

堆排序 堆排序是利用堆的性质进行的一种选择排序。下面先讨论一下堆。堆 堆实际上是一棵完全二叉树,其任何一非叶节点满足性质: Key[i]=key[2i+2]即任何一非叶节点的关键字不大于或者不小...

堆排序原理及算法实现(最大堆)

堆排序        堆排序是利用堆的性质进行的一种选择排序。下面先讨论一下堆。 1.堆   堆实际上是一棵完全二叉树,其任何一非叶节点满足性质:   Key[i]=Key[2i+1]&&key>=k...

最大堆maxheap的一个实现

堆有最大堆,和最小堆。 其中最大堆其实相当于一个优先队列,把队列的优先级存进堆里面,就可以实现优先队列的功能。 //基于数组构建最大堆,该堆是二叉树结构 // Parent(r)=(r-1)/2...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:实用类之二-----最大堆的实现
举报原因:
原因补充:

(最多只允许输入30个字)