《机器学习实战》读书笔记:第一章 机器学习基础

原创 2015年07月08日 12:15:34

监督学习(supervised learning):从输入数据中预测合适的模型,并从中计算出目标变量的结果。
两种类型的目标变量:标称型(分类)和数值型(回归)。
k-近邻算法、决策树、朴素贝叶斯、Logistic回归、支持向量机、AdaBoost
非均衡分类问题:训练样本某个分类的数据多于其他分类的数据

第一章 机器学习基础

机器学习:利用计算机来彰显数据背后的真实含义
人脸识别、手写数字识别、垃圾邮件过滤、亚马逊产品推荐

1.1 何谓机器学习

机器学习:把无序的数据转换成有用的信息,对于任何需要解释并操作数据的领域都有所脾益
特征(属性)、具有相关特征的实例
机器学习的主要任务就是分类
算法训练(学习如何分类),为算法输入大量已分类数据作为算法的训练集。
训练数据和测试数据,算法的实际精准度
知识表示:规则集的形式、概率分布的形式

1.3 机器学习的主要任务

  • 监督学习:分类、回归,算法必须知道预测什么
  • 无监督学习:聚类、密度估计、减少数据特征的维度

1.4 如何选择合适的算法

  • 使用机器学习算法的目的,想要算法完成何种任务
  • 需要分析或收集的数据是什么
  • 不同算法的执行效果,发现最好算法的关键环节是反复试错的迭代过程

1.5 开发机器学习应用程序的步骤

  1. 收集数据:网络爬虫、API、公开可用的数据源
  2. 准备输入数据:Python List
  3. 分析输入数据:人工分析,确保数据集中没有垃圾数据
  4. 训练算法:抽取知识或信息
  5. 测试算法:跟数据的收集和准备有关
  6. 使用算法:转换为应用程序

1.6 Python语言的优势

  1. Python的语法清晰
  2. 易于操作纯文本文件
  3. 使用广泛,存在大量的开发文档

1.6.1 可执行伪代码

高级数据类型:列表、元组、字典、集合、队列
面向对象编程、面向过程编程、函数式编程

1.6.2 Python比较流行

科学函数库:SciPy和NumPy
绘图工具:Matplotlib
交互式shell环境
Pylab模块

1.6.3 Python语言的特色

花费更多的时间处理数据的内在含义

1.6.4 Python语言的缺点

性能问题
先构造可运行的Python程序,然后再逐步使用C代码替换核心代码以改进程序的性能

1.7 NumPy函数库基础

线性代数:为了简化不同的数据点上执行的相同数学运算,将数据表示为矩阵形式,只需要执行简单的矩阵运算而不需要复杂的循环操作
数据类型:矩阵matrix和数组array

randMat = mat(random.rand(4,4))
randMat.I
eye(4)

1.8 本章小结

数据驱动产业

版权声明:本文为博主原创文章,未经博主允许不得转载。

《机器学习实战》完整读书笔记

之前就知道有《机器学习实战》这本书,还有机器学习实战源码,对于想对机器学习理论和实践层面有更深入的了解和学习的话就可以看一下这本书,代码是python写好的,可以拿来跑一下,也可以加进去自己的理解,因...
  • Together_CZ
  • Together_CZ
  • 2017年07月22日 08:09
  • 798

《机器学习实战》第一章 – 机器学习基础

print("Hello Machine");我一直相信, 兴趣是最好的老师!所以对新事物开始的学习,我总喜欢以问题为导向,“所学的东西到底能帮我们解决什么问题?”来引导我不断学习新知识,等有一定理解...
  • u013550998
  • u013550998
  • 2017年02月06日 21:16
  • 166

机器学习实战——第一章

机器学习能让我们从数据集得到启发搜素引擎,邮件过滤系统,推荐系统,数据挖掘(啤酒和尿布) 机器学习在我们生活中随处可见。机器学习是必学的。即使想做其他方向的研究,ML也是基础1:机器学习专业术语 ...
  • steady_pace
  • steady_pace
  • 2015年09月09日 21:57
  • 289

Python3机器学习个例

随机生成数列,进行迭代划分。 例子来源于http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/ 关于其原...
  • ufo0913
  • ufo0913
  • 2017年01月13日 10:30
  • 312

机器学习实战-第四章贝叶斯分类-代码理解-读书笔记

#coding:utf-8 from numpy import * import pdb def load_data_set(): word_list = [['my', 'dog', '...
  • lzj5451896
  • lzj5451896
  • 2016年03月15日 19:31
  • 1081

周志华《机器学习》第一章习题

周志华《机器学习》第一章习题 编号 色泽 根蒂 敲声 好瓜 1 青绿 蜷缩 浊响 是           4 乌黑 稍蜷 沉闷 否 ...
  • lili_wuwu
  • lili_wuwu
  • 2016年08月07日 23:52
  • 442

机器学习实战第一章-机器学习基础

一,开发机器学习应用程序的步骤 收集数据 准备输入数据 分析数据:在此阶段可以对原始数据填充空值、过滤垃圾数据(如异常数据)、进行特征选择与特征降维、可视化分析等等。 训练算法 测试算法 应用算法...
  • h2026966427
  • h2026966427
  • 2018年01月30日 10:37
  • 33

机器学习实战-第一章(机器学习基础)

1 何为机器学习:将无序数据转换成有用信息 2 机器学习任务:分类、回归、聚类、降维 3 开发机器学习应用程序的步骤:收集数据-准备数据--分析数据-训练算法-测试算法-使用算法...
  • huashaojie112358
  • huashaojie112358
  • 2017年05月01日 18:16
  • 79

《机器学习实战》第一章 机器学习基础

第一章 机器学习基础
  • u010040029
  • u010040029
  • 2017年04月23日 15:05
  • 124

《机器学习实战》 第一章 机器学习基础

训练集:用于训练机器学习算法的数据样本集合 目标变量:机器学习的预测结果(在分类算法中通常为标称型,在回归算法中通常是连续型) 为了测试机器学习算法的效果,通常使用两套独立的样本集:训练数...
  • weixin_40475469
  • weixin_40475469
  • 2017年12月09日 22:02
  • 62
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:《机器学习实战》读书笔记:第一章 机器学习基础
举报原因:
原因补充:

(最多只允许输入30个字)