《机器学习实战》读书笔记:第二章 k-近邻算法

原创 2015年07月09日 17:35:04

第二章 k-近邻算法

电影按照题材分类
距离测量

2.1 k-近邻算法概述

测量不同特征值之间的距离方法进行分类

kNN:样本集中每个数据都存在标签,输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。只选择样本数据集中前k个最相似的数据,最后选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

2.1.1 准备:使用Python导入数据

可视化处理三维以下的事物
数据可视化

2.1.2 从文本文件中解析数据

欧氏距离公式

from numpy import *
import operator

def createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group, labels

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX, (dataSetSize, 1)) - dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()
    classCount = {}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

group, labels = createDataSet()
print classify0([0,0], group, labels, 3)

2.1.3 如何测试分类器

分类器的错误率:分类器给出错误结果的次数除以测试执行的总数

2.2 示例:使用k-近邻算法改进约会网站的配对效果

2.2.1 准备数据:从文本文件中解析数据

def file2matrix(filename):
    fr = open(filename)
    arrayOLines = fr.readlines()
    numberOfLines = len(arrayOLines)
    returnMat = zeros((numberOfLines,3))
    classLabelVector = []
    index = 0
    for line in arrayOLines:
        line = line.strip()
        listFromLine = line.split('\t')
        returnMat[index,:] = listFromLine[0:3]
        classLabelVector.append(int(listFromLine[-1]))
        index += 1
    return returnMat, classLabelVector

NumPy数组和Python数组

2.2.2 分析数据:使用Matplotlib创建散点图

fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,0],datingDataMat[:,1],15.0*array(datingLabels),15.0*array(datingLabels))
plt.show()

2.2.3 准备数据:归一化数值

  • 三个等权重的特征
  • 处理不同取值范围的特征值,将数值归一化,将取值范围处理为0到1或者-1到1之间
  • newValue = (oldValue-min)/(max-min)转化为0到1区间的值
  • tile()函数:将变量内容复制成输入矩阵相同大小的矩阵
def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - tile(minVals, (m,1))
    normDataSet = normDataSet/tile(ranges, (m,1))
    return normDataSet, ranges, minVals

2.2.4 测试算法:作为完整程序验证分类器

评估算法的正确率:提供已有数据的90%作为训练样本来训练分类器,使用其余的10%数据去测试分类器,检测分类器的正确率。
10%的测试数据随机选择
错误率:分类器给出错误结果的次数除以测试数据的总数
得到可靠的数据
分类算法、数据集和程序设置

def datingClassTest():
    hoRatio = 0.10
    datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
    normMat, ranges, minVals = autoNorm(datingDataMat)
    m = normMat.shape[0]
    numTestVecs = int(m*hoRatio)
    errorCount = 0.0
    for i in range(numTestVecs):
        classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
        if(classifierResult != datingLabels[i]):
            errorCount += 1.0
    print "the total error rate is: %f" % (errorCount/float(numTestVecs))

2.2.5 使用算法:构建完整可用系统

def classifyPerson():
    resultList = ['not at all','in small doses','in large doses']
    percentTats = float(raw_input("percentage of time spent playing video games?"))
    ffMiles = float(raw_input("frequent flier miles earned per year?"))
    iceCream = float(raw_input("liters of ice cream consumed per year?"))
    datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
    normMat, ranges, minVals = autoNorm(datingDataMat)
    inArr = array([ffMiles, percentTats, iceCream])
    print inArr
    classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
    print "You will probably like this person: ", resultList[classifierResult-1]

2.3 示例:手写识别系统

需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小。
将图像转换为文本格式。

2.3.1 准备数据:将图像转换为测试向量

将一个32*32的二进制图像矩阵转换为1*1024的向量。

def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

2.3.2 测试算法:使用k-近邻算法识别手写数字

def handwritingClassTest():
    hwLabels = []
    trainingFileList = listdir('trainingDigits')
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])
        hwLabels.append(classNumStr)
        trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
    testFileList = listdir('testDigits')
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])
        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
        if(classifierResult != classNumStr):
            errorCount += 1.0
    print "\nthe total number of errors is: %d" % errorCount
    print "\nthe total error rate is: %f" % (errorCount/float(mTest))

k决策树是k-近邻算法的优化版,可以节省大量的计算开销。

2.4 本章小结

无法给出任何数据的基本结构信息,无法知晓平均实例样本和典型实例样本具有什么特征。
使用概率测量方法处理分类问题。

版权声明:本文为博主原创文章,未经博主允许不得转载。

《机器学习实战》学习笔记:k-近邻算法实现

机器学习:k-近邻(kNN)算法的基本原理与Python实现
  • liyuefeilong
  • liyuefeilong
  • 2015年08月30日 00:10
  • 3459

机器学习实战——使用K-近邻算法识别手写数字

使用K-近邻分类器构造手写识别系统,手写数字图片已经经过处理成为文本文件,如下所示: 每张图片都是32像素X32像素 首先,我们要把每个输入的文本文件转换KNN算法(前面的KNN算法实践已...
  • kelvinLLL
  • kelvinLLL
  • 2017年03月25日 21:45
  • 351

代码注释:机器学习实战第2章 k-近邻算法

在学习的过程中发现书中很多代码并没有注释,这对新入门的同学是一个挑战,特此贴出我对代码做出的注释,仅供参考,欢迎指正。...
  • da_da007
  • da_da007
  • 2017年03月18日 17:21
  • 372

机器学习实战——使用K-近邻算法进行约会配对

任务:通过海伦收集的3个特征,如:            1.每年获得的飞行常客里程数    2.玩视频游戏所耗的时间百分比    3.每周消费的冰淇淋公升数 用K近邻的方法,预测海伦对未知对...
  • kelvinLLL
  • kelvinLLL
  • 2017年03月25日 17:43
  • 315

机器学习实战之K-近邻算法总结和代码解析

机器学习实战是入手机器学习和python实战的比较好的书,可惜我现在才开始练习代码!先声明:本人菜鸟一枚,机器学习的理论知识刚看了一部分,python的知识也没学很多,所以写代码调试的过程很痛可!但是...
  • Katrina_ALi
  • Katrina_ALi
  • 2017年04月18日 21:09
  • 396

Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文)

本文将从k-邻近算法的思想开始讲起,使用python3一步一步编写代码进行实战训练。并且,我也提供了相应的数据集,对代码进行了详细的注释。除此之外,本文也对sklearn实现k-邻近算法的方法进行了讲...
  • c406495762
  • c406495762
  • 2017年07月15日 16:04
  • 12642

简单易学的机器学习算法——K-近邻算法

K-NN算法
  • google19890102
  • google19890102
  • 2014年04月17日 13:30
  • 8257

机器学习实战—k近邻算法(kNN)02-改进约会网站的配对效果

示例:使用k-近邻算法改进约会网站的配对效果在约会网站上使用k-近邻算法: 1.收集数据:提供文本文件。 2.准备数据:使用Python解析文本文件。 3.分析数据:使用matplotlib画二...
  • u012150360
  • u012150360
  • 2017年05月07日 20:29
  • 548

《机器学习实战》第二章 - k-近邻算法

算法理解K-近邻算法 测量待分类样本的特征值与已经分好类的样本对应的特征值之间的距离,最邻近的一个或者几个训练样本的类别决定了待分类样本所属的类别。...
  • u013550998
  • u013550998
  • 2017年02月06日 21:31
  • 126

【机器学习实战04】k-均值聚类算法

1、聚类定义 聚类是一种无监督学习,它将相似的对象归为一类,簇内的对象越相似,聚类的效果越好。k-均值首先发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成。 2、开发机器学习应用程序的...
  • kevinelstri
  • kevinelstri
  • 2016年08月20日 14:38
  • 1438
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:《机器学习实战》读书笔记:第二章 k-近邻算法
举报原因:
原因补充:

(最多只允许输入30个字)