关闭

《机器学习实战》读书笔记:第二章 k-近邻算法

标签: 机器学习k-近邻算法
142人阅读 评论(0) 收藏 举报
分类:

第二章 k-近邻算法

电影按照题材分类
距离测量

2.1 k-近邻算法概述

测量不同特征值之间的距离方法进行分类

kNN:样本集中每个数据都存在标签,输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。只选择样本数据集中前k个最相似的数据,最后选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

2.1.1 准备:使用Python导入数据

可视化处理三维以下的事物
数据可视化

2.1.2 从文本文件中解析数据

欧氏距离公式

from numpy import *
import operator

def createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group, labels

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX, (dataSetSize, 1)) - dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()
    classCount = {}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

group, labels = createDataSet()
print classify0([0,0], group, labels, 3)

2.1.3 如何测试分类器

分类器的错误率:分类器给出错误结果的次数除以测试执行的总数

2.2 示例:使用k-近邻算法改进约会网站的配对效果

2.2.1 准备数据:从文本文件中解析数据

def file2matrix(filename):
    fr = open(filename)
    arrayOLines = fr.readlines()
    numberOfLines = len(arrayOLines)
    returnMat = zeros((numberOfLines,3))
    classLabelVector = []
    index = 0
    for line in arrayOLines:
        line = line.strip()
        listFromLine = line.split('\t')
        returnMat[index,:] = listFromLine[0:3]
        classLabelVector.append(int(listFromLine[-1]))
        index += 1
    return returnMat, classLabelVector

NumPy数组和Python数组

2.2.2 分析数据:使用Matplotlib创建散点图

fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,0],datingDataMat[:,1],15.0*array(datingLabels),15.0*array(datingLabels))
plt.show()

2.2.3 准备数据:归一化数值

  • 三个等权重的特征
  • 处理不同取值范围的特征值,将数值归一化,将取值范围处理为0到1或者-1到1之间
  • newValue = (oldValue-min)/(max-min)转化为0到1区间的值
  • tile()函数:将变量内容复制成输入矩阵相同大小的矩阵
def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - tile(minVals, (m,1))
    normDataSet = normDataSet/tile(ranges, (m,1))
    return normDataSet, ranges, minVals

2.2.4 测试算法:作为完整程序验证分类器

评估算法的正确率:提供已有数据的90%作为训练样本来训练分类器,使用其余的10%数据去测试分类器,检测分类器的正确率。
10%的测试数据随机选择
错误率:分类器给出错误结果的次数除以测试数据的总数
得到可靠的数据
分类算法、数据集和程序设置

def datingClassTest():
    hoRatio = 0.10
    datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
    normMat, ranges, minVals = autoNorm(datingDataMat)
    m = normMat.shape[0]
    numTestVecs = int(m*hoRatio)
    errorCount = 0.0
    for i in range(numTestVecs):
        classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
        if(classifierResult != datingLabels[i]):
            errorCount += 1.0
    print "the total error rate is: %f" % (errorCount/float(numTestVecs))

2.2.5 使用算法:构建完整可用系统

def classifyPerson():
    resultList = ['not at all','in small doses','in large doses']
    percentTats = float(raw_input("percentage of time spent playing video games?"))
    ffMiles = float(raw_input("frequent flier miles earned per year?"))
    iceCream = float(raw_input("liters of ice cream consumed per year?"))
    datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
    normMat, ranges, minVals = autoNorm(datingDataMat)
    inArr = array([ffMiles, percentTats, iceCream])
    print inArr
    classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
    print "You will probably like this person: ", resultList[classifierResult-1]

2.3 示例:手写识别系统

需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小。
将图像转换为文本格式。

2.3.1 准备数据:将图像转换为测试向量

将一个32*32的二进制图像矩阵转换为1*1024的向量。

def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

2.3.2 测试算法:使用k-近邻算法识别手写数字

def handwritingClassTest():
    hwLabels = []
    trainingFileList = listdir('trainingDigits')
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])
        hwLabels.append(classNumStr)
        trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
    testFileList = listdir('testDigits')
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])
        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
        if(classifierResult != classNumStr):
            errorCount += 1.0
    print "\nthe total number of errors is: %d" % errorCount
    print "\nthe total error rate is: %f" % (errorCount/float(mTest))

k决策树是k-近邻算法的优化版,可以节省大量的计算开销。

2.4 本章小结

无法给出任何数据的基本结构信息,无法知晓平均实例样本和典型实例样本具有什么特征。
使用概率测量方法处理分类问题。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:430次
    • 积分:24
    • 等级:
    • 排名:千里之外
    • 原创:2篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档