《机器学习实战》读书笔记:第二章 k-近邻算法

原创 2015年07月09日 17:35:04

第二章 k-近邻算法

电影按照题材分类
距离测量

2.1 k-近邻算法概述

测量不同特征值之间的距离方法进行分类

kNN:样本集中每个数据都存在标签,输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。只选择样本数据集中前k个最相似的数据,最后选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

2.1.1 准备:使用Python导入数据

可视化处理三维以下的事物
数据可视化

2.1.2 从文本文件中解析数据

欧氏距离公式

from numpy import *
import operator

def createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group, labels

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX, (dataSetSize, 1)) - dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()
    classCount = {}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

group, labels = createDataSet()
print classify0([0,0], group, labels, 3)

2.1.3 如何测试分类器

分类器的错误率:分类器给出错误结果的次数除以测试执行的总数

2.2 示例:使用k-近邻算法改进约会网站的配对效果

2.2.1 准备数据:从文本文件中解析数据

def file2matrix(filename):
    fr = open(filename)
    arrayOLines = fr.readlines()
    numberOfLines = len(arrayOLines)
    returnMat = zeros((numberOfLines,3))
    classLabelVector = []
    index = 0
    for line in arrayOLines:
        line = line.strip()
        listFromLine = line.split('\t')
        returnMat[index,:] = listFromLine[0:3]
        classLabelVector.append(int(listFromLine[-1]))
        index += 1
    return returnMat, classLabelVector

NumPy数组和Python数组

2.2.2 分析数据:使用Matplotlib创建散点图

fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,0],datingDataMat[:,1],15.0*array(datingLabels),15.0*array(datingLabels))
plt.show()

2.2.3 准备数据:归一化数值

  • 三个等权重的特征
  • 处理不同取值范围的特征值,将数值归一化,将取值范围处理为0到1或者-1到1之间
  • newValue = (oldValue-min)/(max-min)转化为0到1区间的值
  • tile()函数:将变量内容复制成输入矩阵相同大小的矩阵
def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - tile(minVals, (m,1))
    normDataSet = normDataSet/tile(ranges, (m,1))
    return normDataSet, ranges, minVals

2.2.4 测试算法:作为完整程序验证分类器

评估算法的正确率:提供已有数据的90%作为训练样本来训练分类器,使用其余的10%数据去测试分类器,检测分类器的正确率。
10%的测试数据随机选择
错误率:分类器给出错误结果的次数除以测试数据的总数
得到可靠的数据
分类算法、数据集和程序设置

def datingClassTest():
    hoRatio = 0.10
    datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
    normMat, ranges, minVals = autoNorm(datingDataMat)
    m = normMat.shape[0]
    numTestVecs = int(m*hoRatio)
    errorCount = 0.0
    for i in range(numTestVecs):
        classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
        if(classifierResult != datingLabels[i]):
            errorCount += 1.0
    print "the total error rate is: %f" % (errorCount/float(numTestVecs))

2.2.5 使用算法:构建完整可用系统

def classifyPerson():
    resultList = ['not at all','in small doses','in large doses']
    percentTats = float(raw_input("percentage of time spent playing video games?"))
    ffMiles = float(raw_input("frequent flier miles earned per year?"))
    iceCream = float(raw_input("liters of ice cream consumed per year?"))
    datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
    normMat, ranges, minVals = autoNorm(datingDataMat)
    inArr = array([ffMiles, percentTats, iceCream])
    print inArr
    classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
    print "You will probably like this person: ", resultList[classifierResult-1]

2.3 示例:手写识别系统

需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小。
将图像转换为文本格式。

2.3.1 准备数据:将图像转换为测试向量

将一个32*32的二进制图像矩阵转换为1*1024的向量。

def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

2.3.2 测试算法:使用k-近邻算法识别手写数字

def handwritingClassTest():
    hwLabels = []
    trainingFileList = listdir('trainingDigits')
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])
        hwLabels.append(classNumStr)
        trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
    testFileList = listdir('testDigits')
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])
        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
        if(classifierResult != classNumStr):
            errorCount += 1.0
    print "\nthe total number of errors is: %d" % errorCount
    print "\nthe total error rate is: %f" % (errorCount/float(mTest))

k决策树是k-近邻算法的优化版,可以节省大量的计算开销。

2.4 本章小结

无法给出任何数据的基本结构信息,无法知晓平均实例样本和典型实例样本具有什么特征。
使用概率测量方法处理分类问题。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

机器学习实战读书笔记-第一章k-近邻算法

才开始看机器学习实战这本书,确实有些晚了,还只能在碎片时间来看,不过确实非常有用 接下来按照书上的例子实际操作了一遍,源代码和数据在书前面的链接里就能找到 我用的python3+win8.1 第...

机器学习入门读书笔记二(k-近邻算法 kNN) 上

k-近邻算法(kNN)采用测量不同特征值之间的距离方法进行分类 优点:精度高、对异常值不敏感、无数据输入假定。 缺点:计算复杂度高、空间复杂度高。 适用数据范围:数值型和标称型。 工作原理:训练样本...
  • Du_wood
  • Du_wood
  • 2016年08月14日 10:01
  • 567

机器学习入门读书笔记四(k-近邻算法 kNN) 下

使用k-近邻分类器的手写识别系统 背景:利用k-近邻算法构造可以识别数字0到9的系统,需要处理的数字已经使用图形处理软件,处理成32*32像素的黑白图像,为了方便理解,数据以文本文件存储(虽然这不是一...
  • Du_wood
  • Du_wood
  • 2016年08月14日 20:29
  • 374

《机器学习实战》第二章 - k-近邻算法

算法理解K-近邻算法 测量待分类样本的特征值与已经分好类的样本对应的特征值之间的距离,最邻近的一个或者几个训练样本的类别决定了待分类样本所属的类别。...

《机器学习实战》第二章:k-近邻算法(2)约会对象分类

这是KNN一个的新例子。 在一个约会网站里,每个约会对象有三个特征: (1)每年获得的飞行常客里程数(额...这个用来判断你是不是成功人士?) (2)玩视频游戏所耗时间百分比(额...这个用来判断你是...

[完]机器学习实战 第二章 k-近邻算法(k Nearest Neighbor)

机器学习实战(Machine Learning in Action)第二章内容,罗列了k-近邻算法、从文本文件中解析和导入数据、使用Matplotlib创建散点图、归一化数值等代码,以及本章使用的函数...

机器学习实战笔记2(k-近邻算法)

1:算法简单描述        给定训练数据样本和标签,对于某测试的一个样本数据,选择距离其最近的k个训练样本,这k个训练样本中所属类别最多的类即为该测试样本的预测标签。简称kNN。通常k是不大于2...

机器学习实战笔记(1)——k-近邻算法

机器学习实战笔记(1) 1. 写在前面 近来感觉机器学习,深度学习神马的是越来越火了,从AlphaGo到Master,所谓的人工智能越来越NB,而我又是一个热爱新潮事物的人,于是也来凑个热闹学习学...

《机器学习实战》课程笔记(第2章) k-近邻算法

一、k-近邻算法(KNN):工作原理: 存在一个样本数集合,也称作样本集;'样本集'中每个数据都存在标签(标识所属分类)。输入无标签的新数据后,将新数据的每个特征与样本集中每个数据所属分类进行比较...

《机器学习实战》笔记之二——K-近邻算法

第二章 K-近邻算法 K-近邻算法从文本文件中解析和导入数据使用Matplotlib创建扩展图归一化数值 2.1 k-近邻算法概述 工作原理: 存在一个样本数据集合,并且样本集中每个数据都存在标...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:《机器学习实战》读书笔记:第二章 k-近邻算法
举报原因:
原因补充:

(最多只允许输入30个字)