Gauss template

原创 2016年05月30日 14:02:14

learn from kuangbin

#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstdlib>
using namespace std;
const int maxn = 50;
int a[maxn][maxn]; // zeng guang
int x[maxn] ; // ans_x
int free_x[maxn] ;
// 8 6 (6,2) (2,0)
inline int gcd(int a , int b) {
    return b == 0 ? a : gcd(b,a%b) ;
    /*int t ;
    while(b){
        t = b ;
        b = a%b ;
        a = t ;
    }
    return a;*/
}
inline int lcm(int a ,int b){
    return a/gcd(a,b)*b;
}
inline int abs(int a ){
    return a > 0 ? a : -a;
}
void debug(int equ , int var){
    for(int i = 0 ; i < equ ; ++i){
        for(int j = 0 ;j <= var ; ++j){
            cout << a[i][j] << " " ;
        }
        cout << endl;
    }
}
int Gauss(int equ , int var) {
    int max_r ;
    for(int i = 0 ; i <= var ; ++i){
        free_x[i] = false ;
        x[i] = 0 ;
    }
    //cout << equ << " " << var << endl;
    int row , col ;
    for(row = 0 ,col = 0 ; row < equ && col < var ; ++row , ++col) {
        max_r = row ;
        for(int i = row+1 ; i < equ ; ++i){         // find the max element in this col
            if(abs(a[max_r][col]) < abs(a[i][col])) max_r = i;
        }
        if(max_r != row){
            for(int j = col ; j <= var ; ++j){  // change
                swap(a[max_r][j],a[row][j]) ;
            }
        }
        if(!a[row][col]) {                  // 0
            row--;
            continue ;
        }
        //debug(3,3) ;
        for(int i = row+1 ; i < equ ; ++i){
            if(a[i][col]){// sub a[i][col] -> 0

                    int tmp = lcm(abs(a[i][col]),abs(a[row][col])) ;
                    int up = tmp/(abs(a[row][col])) ;
                    int down = tmp/(abs(a[i][col])) ;
                    //cout << tmp << " " << up << " " << down << endl;
                    if(a[i][col]*a[row][col]<0) up = -up ;
                for(int j = col ; j <= var; ++j){
                    a[i][j] = a[i][j]*down - a[row][j]*up ;
                }
            }
        }
    //system("pause") ;
    }
    // col == var  , [row,equ) == 皆是0000...an
    for(int i = row ; i < equ ; ++i){
        if(a[i][col] != 0) {
            return -1 ;         // no solve
        }
    }
    if(row < var){ //[row , equ -1 ] -> (000.000)  have free_x ,at least var - row . cal the x[]
            int free_index ;
        for(int i = row-1; i >= 0; --i){
            int free_num = 0 ;
            for(int j = i; j < var; ++j){
                if(a[i][j]&&(!free_x[j])) {
                    free_num++ ;
                    free_index = j ;
                }
            }
            if(free_num > 1) continue ; // free_x > 1 , can't solve
            // solve the free__index;
            int tmp = a[i][var] ;
            for(int j = i ; j < var ; ++j){
                if(a[i][j] && j != free_index) {
                    tmp -= a[i][j]*x[j] ;
                }
            }
            x[free_index] = tmp/a[i][free_index] ;      // solve the x of a[i][free_index] ;
            free_x[free_index] = true ;                 // solvable
        }
        return var - row ;
    }
    // only have one ans and must be the ans
    for(int i = equ-1 ; i >= 0 ; --i){
            int tmp = a[i][var] ;
        for(int j = i+1 ; j < var ; ++j){
                if(a[i][j])
            tmp -= a[i][j]*x[j] ;
        }
        // if(tmp%a[i][i] != 0 ) have the ans of double type
        x[i] = tmp/a[i][i] ;
    }
    return 0;
}
int main(){
    int t ;
    cin >> t ;
    while(t--){
            int equ , var ;
        cin >> equ >> var ;
        for(int i = 0 ;i < equ ; ++i){
            for(int j = 0; j <= var ; ++j){
                cin >> a[i][j] ;
            }
        }
        int tmp = Gauss(equ,var);
        if(tmp == -1 ) cout << "can't solve the question" << endl;
        else if(tmp == 0) cout << "there is only ans " << endl;
        else cout << "there have lots of ans" << endl;
        if(!tmp) {
            for(int i = 0 ;i < var ; ++i){
                cout << "x" << i << "is " << x[i] << endl ;
            }
        }
    }
/*
5
3 3
2 1 -1 8
0 1 1 2
0 2 1 5
x = 2 , y = 3  , z = -1
*/
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

hdu 1588 Gauss Fibonacci (矩阵)

Gauss Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)...
  • clover_hxy
  • clover_hxy
  • 2016年05月22日 20:09
  • 263

HDU 1588 Gauss Fibonacci(矩阵快速幂+二分等比序列求和)

HDU 1588 Gauss Fibonacci(矩阵快速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b...
  • hcbbt
  • hcbbt
  • 2014年08月05日 01:10
  • 2330

Gauss–Seidel迭代 + Jacobi迭代

一、Gauss–Seidel Iteration(高斯-赛德尔迭代) https://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method 高斯-赛德尔...
  • wwanrong
  • wwanrong
  • 2017年12月28日 22:14
  • 101

Gauss

 然后自己根据CROUT代码编写了GAUSS消元法,这个比CROUT简单点,首先消除了所有的语法错误,现在把C++学好了,基本这样的代码页就没有什么大的语法错误了,很容易就搞定了 但是结果却不正确,自...
  • collapsar_feel
  • collapsar_feel
  • 2006年12月04日 22:20
  • 749

Gauss–Seidel方法和Jacobi 方法

Gauss–Seidelmethod 对应于形如Ax = b的方程(A为对称正定矩阵或者Diagonally dominant),可求解如下:         Jacobi method 另一种方法是...
  • wangxiaojun911
  • wangxiaojun911
  • 2011年10月20日 12:57
  • 8409

Gauss-Newton algorithm

function [x,minf] = minGN(f,x0,var,eps) format long; if nargin == 3 eps = 1.0e-6; end S = transp...
  • tanmengwen
  • tanmengwen
  • 2015年06月12日 16:04
  • 921

[POJ 1588] Gauss Fibonacci (矩阵快速幂)

链接HDU 1588题意求若干项fibonacci数列的sum(fibonacci[j]),j = k*i + b。 fibonacci数列的等差数列项求和。题解矩阵快速幂的一个经典例题就是快速求出...
  • zichenzhiguang
  • zichenzhiguang
  • 2016年09月30日 14:12
  • 156

Gauss消去法解线性方程组(Matlab)

clear;clc; % Gauss消去法解线性方程组 A=[3 -5 6 4 -2 -3 8;        1 1 -9 15 1 -9 2;     2 -1 7 5 -1 6 11;...
  • zhangchao3322218
  • zhangchao3322218
  • 2011年09月18日 21:59
  • 2715

Gaussian安装手册 v1.02

  一、            背景介绍Gaussian是目前计算化学领域内最流行、应用范围最广的商业化量子化学计算程序包。它最早是由美国卡内基梅隆大学的约翰·波普(John A Pople,  19...
  • Tobeabetterman_He
  • Tobeabetterman_He
  • 2009年08月20日 10:38
  • 3654

数值分析2.1 Gauss(高斯)消去法

顺序高斯消去法: 代码: #include #include using namespace std; const int MAXN = 10000; double a[MAXN][MAXN]...
  • leader880022
  • leader880022
  • 2015年04月05日 10:23
  • 419
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Gauss template
举报原因:
原因补充:

(最多只允许输入30个字)