# Gauss poj 1222

POJ 1222
0x11 1x12 1x13 0x14
1x21 0x22 0x23 1x24
0x31 0x32 1x33 0x34
1x41 0x42 0x43 1x44
-> simply
[ 0 0 0 0] [0 1 1 0] -> b[1][1] = x11^ x12^ x13 ^ a[1][1] -> b[1][1] ^ a[1][1] = x11^ x12^ x13 -> a[1][1] = x11 ^ x12 ^ x13
[ 0 0 0 0] [1 0 0 1] -> b[1][2] = x11^ x12^ x13 ^ x22 ^ a[1][2] -> b[1][2] ^ a[1][2] = x11^ x12^ x13 ^ x22 -> a[1][2] = x11 ^ x12 ^ x13 ^ x22
[ 0 0 0 0] [0 0 1 0] so a[2][2] = x21 ^ x22 ^ x32 ^ x21 ^ x23
[ 0 0 0 0] [1 0 0 1]
then -> a[num] = x[1]*Map[num][1] ^ … ^ x[16]*Map[num][16]
a(16*1) = Map(16*16)(* ^)x(16*1)
Gauss-> Map(16*17) -> cal x(16*1)
in this problem Gauss(equ = 30, var = 30) Map(30,31) -> x(30,1)

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
using namespace std;
//0x11 1x12 1x13 0x14
//1x21 0x22 0x23 1x24
//0x31 0x32 1x33 0x34
//1x41 0x42 0x43 1x44
//-> simply
//[ 0 0 0 0] [0 1 1 0] -> b[1][1]  = x11^ x12^ x13 ^ a[1][1] -> b[1][1] ^ a[1][1] = x11^ x12^ x13 -> a[1][1] = x11 ^ x12 ^ x13
//[ 0 0 0 0] [1 0 0 1] -> b[1][2]  = x11^ x12^ x13 ^ x22 ^ a[1][2] ->  b[1][2] ^ a[1][2] = x11^ x12^ x13 ^ x22 -> a[1][2] = x11 ^ x12 ^ x13 ^ x22
//[ 0 0 0 0] [0 0 1 0]    so a[2][2] = x21 ^ x22 ^ x32 ^ x21 ^ x23
//[ 0 0 0 0] [1 0 0 1]
//then -> a[num]  = x[1]*Map[num][1] ^ ... ^ x[16]*Map[num][16]
//a(16*1) =  Map(16*16)(* ^)x(16*1)
//Gauss-> Map(16*17) -> cal x(16*1)
// in this problem Gauss(equ = 30, var = 30)  Map(30,31) -> x(30,1)
const int maxn = 50;
int a[maxn][maxn]; // zeng guang
int x[maxn] ; // ans_x
int free_x[maxn] ;
// 8 6 (6,2) (2,0)
inline int gcd(int a , int b) {
return b == 0 ? a : gcd(b,a%b) ;
/*int t ;
while(b){
t = b ;
b = a%b ;
a = t ;
}
return a;*/
}
inline int lcm(int a ,int b){
return a/gcd(a,b)*b;
}
inline int Abs(int a ){
return a > 0 ? a : -a;
}
void debug(int equ , int var){
for(int i = 0 ; i < equ ; ++i){
for(int j = 0 ;j <= var ; ++j){
cout << a[i][j] << " " ;
}
cout << endl;
}
}
int Gauss(int equ , int var) {
int max_r ;
for(int i = 0 ; i <= var ; ++i){
free_x[i] = false ;
x[i] = 0 ;
}
//cout << equ << " " << var << endl;
int row , col ;
for(row = 0 ,col = 0 ; row < equ && col < var ; ++row , ++col) {
max_r = row ;
for(int i = row+1 ; i < equ ; ++i){         // find the max element in this col
if(Abs(a[max_r][col]) < Abs(a[i][col])) max_r = i;
}
if(max_r != row){
for(int j = col ; j <= var ; ++j){  // change
swap(a[max_r][j],a[row][j]) ;
}
}
if(!a[row][col]) {                  // 0
row--;
continue ;
}
//debug(3,3) ;
for(int i = row+1 ; i < equ ; ++i){
if(a[i][col]){// sub a[i][col] -> 0
/*  int tmp = lcm(abs(a[i][col]),abs(a[row][col])) ;
int up = tmp/(abs(a[row][col])) ;
int down = tmp/(abs(a[i][col])) ;
//cout << tmp << " " << up << " " << down << endl;
if(a[i][col]*a[row][col]<0) up = -up ;
for(int j = col ; j <= var; ++j){
a[i][j] = a[i][j]*down - a[row][j]*up ;
}   */
for(int j = 0 ; j <= var ; ++j){
a[i][j] ^= a[row][j] ;
}
}
}
//system("pause") ;
}
// col == var  , [row,equ) == all of 0000...a
for(int i = row ; i < equ ; ++i){
if(a[i][col] != 0) {
return -1 ;         // no solve
}
}
/* if(row < var){ //[row , equ -1 ] -> (000.000)  have free_x ,at least var - row . cal the x[]
int free_index ;
for(int i = row-1; i >= 0; --i){
int free_num = 0 ;
for(int j = i; j < var; ++j){
if(a[i][j]&&(!free_x[j])) {
free_num++ ;
free_index = j ;
}
}
if(free_num > 1) continue ; // free_x > 1 , can't solve
// solve the free__index;
int tmp = a[i][var] ;
for(int j = i ; j < var ; ++j){
if(a[i][j] && j != free_index) {
tmp -= a[i][j]*x[j] ;
}
}
x[free_index] = tmp/a[i][free_index] ;      // solve the x of a[i][free_index] ;
free_x[free_index] = true ;                 // solvable
}
return var - row ;
}   */
// only have one ans and must be the ans
for(int i = equ-1 ; i >= 0 ; --i){
bool tmp = a[i][var] ;
/*for(int j = i+1 ; j < var ; ++j){
if(a[i][j])
tmp -= a[i][j]*x[j] ;
}*/
// if(tmp%a[i][i] != 0 )  double ans
for(int j = i+1 ; j < var ; ++j){
if(a[i][j])
tmp ^= x[j] ;
}
x[i] = tmp ;
//x[i] = tmp/a[i][i] ;
}
return 0;
}
void init(int var){
for(int row=0; row<var; ++row){
for(int col=0; col<var; ++col){
a[row][col] = false;
/*row-1>=0&&col-1>=0 ? a[row-1][col-1] = true : a[row-1][col-1] = false;
row-1>=0 ? a[row-1][col] = true : a[row-1][col] = false;
col+1<var ? a[row][col+1] = true : a[row][col+1] = false;
col+1<var&&row+1<var ? a[row+1][col+1] = true : a[row+1][col+1] = false;*/
}
}
for(int i = 0 ;i < 5 ; ++i){
for(int j = 0 ;j < 6 ; ++j){
int tmp = i*6+j ;
if(i==0&&j==0) a[tmp][tmp+1] = a[tmp][tmp+6] = a[tmp][tmp] = true ;
else if(i==0&&j==5) a[tmp][tmp] = a[tmp][tmp-1] = a[tmp][tmp+6] = true ;
else if(i==4&&j==0) a[tmp][tmp] = a[tmp][tmp-6] = a[tmp][tmp+1] = true ;
else if(i==4&&j==5) a[tmp][tmp] = a[tmp][tmp-6] = a[tmp][tmp-1] = true ;
else if(j==0) a[tmp][tmp-6] = a[tmp][tmp] = a[tmp][tmp+6] = a[tmp][tmp+1] = true ;
else if(j==5) a[tmp][tmp-6] = a[tmp][tmp] = a[tmp][tmp+6] = a[tmp][tmp-1] = true ;
else if(i==0) a[tmp][tmp+1] = a[tmp][tmp] = a[tmp][tmp+6] = a[tmp][tmp-1] = true ;
else if(i==4) a[tmp][tmp+1] = a[tmp][tmp] = a[tmp][tmp-6] = a[tmp][tmp-1] = true ;
else a[tmp][tmp] = a[tmp][tmp+6] = a[tmp][tmp-6] = a[tmp][tmp+1] = a[tmp][tmp-1] = true ;
}
}
//    debug(var,var) ;
//    system("pause") ;
return ;
}
int main(){
int t ,cas = 1;
cin >> t ;
while(t--){
int var = 5*6 ;
init(var) ;
for(int i=0; i<5*6; ++i){
cin >> a[i][var] ;
}
// debug(30,30) ;
int flag = Gauss(var,var) ;
if(!flag){
char ch[] = "PUZZLE #";
printf("%s%d\n",ch,cas++) ;
for(int i = 0 , cnt = 1 ;i < 30 ; ++i,cnt++){
cnt%6 ? printf("%d ",x[i]) : printf("%d\n",x[i]) ;
}
}
}
return 0;
}


• 本文已收录于以下专栏：

## POJ 1222 熄灯游戏

• morgan_xww
• 2010年08月10日 13:58
• 4066

## POJ-1222 EXTENDED LIGHTS OUT(高斯消元)

• moringrain
• 2015年08月10日 14:19
• 707

## POJ 1222 高斯消元法

CXLOVE的第一篇博文，先来一个水题 开灯关灯问题，5*6的灯阵，将每一个位置上的状态看做一个变元，30个变元，列出30个异或方程，高斯消元解方程即可 N年前就做过这题，当时是位运算枚举+递推 ...
• ACM_cxlove
• 2012年03月30日 15:13
• 5523

## poj 1222 EXTENDED LIGHTS OUT(高斯消元)

http://poj.org/problem?id=1222 先贴一个链接 http://blog.csdn.net/u013081425/article/details/24248247 枚举...
• u013081425
• 2014年04月25日 09:12
• 2001

## pku1222（高斯消元1）

http://162.105.81.212/JudgeOnline/problem?id=1222题意：有一个5*6的方阵，每个位置都表示按钮和灯，1表示亮，0表示灭。每当按下（i，j）时，（i，j）...
• shiren_Bod
• 2010年07月26日 17:12
• 4042

## poj 1222 高斯消元详解

• u013508213
• 2015年08月03日 22:34
• 2351

## 【POJ 1222】EXTENDED LIGHTS OUT

• Regina8023
• 2015年04月09日 00:04
• 962

## POJ 1222(Gauss消元xor版)

EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 518...
• nike0good
• 2013年02月06日 17:04
• 1203

## poj 1222 EXTENDED LIGHTS OUT(Gauss)

• shiyuankongbu
• 2013年04月25日 19:59
• 543

## 高斯消元几道入门题总结POJ1222&&POJ1681&&POJ1830&&POJ2065&&POJ3185

• u010885899
• 2015年11月11日 15:30
• 630

举报原因： 您举报文章：Gauss poj 1222 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)