scikit-learn学习之K最近邻算法(KNN)

18688人阅读 评论(19)

======================================================================

======================================================================

Scikit-Learn中 sklearn.neighbors的函数包括（点击查看来源URL

sklearn.neighbors: Nearest Neighbors

The sklearn.neighbors module implements the k-nearest neighbors algorithm.

User guide: See the Nearest Neighbors section for further details.

 neighbors.NearestNeighbors([n_neighbors, ...]) Unsupervised learner for implementing neighbor searches. neighbors.KNeighborsClassifier([...]) Classifier implementing the k-nearest neighbors vote. neighbors.RadiusNeighborsClassifier([...]) Classifier implementing a vote among neighbors within a given radius neighbors.KNeighborsRegressor([n_neighbors, ...]) Regression based on k-nearest neighbors. neighbors.RadiusNeighborsRegressor([radius, ...]) Regression based on neighbors within a fixed radius. neighbors.NearestCentroid([metric, ...]) Nearest centroid classifier. neighbors.BallTree BallTree for fast generalized N-point problems neighbors.KDTree KDTree for fast generalized N-point problems neighbors.LSHForest([n_estimators, radius, ...]) Performs approximate nearest neighbor search using LSH forest. neighbors.DistanceMetric DistanceMetric class neighbors.KernelDensity([bandwidth, ...]) Kernel Density Estimation
 neighbors.kneighbors_graph(X, n_neighbors[, ...]) Computes the (weighted) graph of k-Neighbors for points in X neighbors.radius_neighbors_graph(X, radius) Computes the (weighted) graph of Neighbors for points in X

Finding the Nearest Neighbors

sklearn.neighbors.NearestNeighbors具体说明查看：URL  在这只是将用到的加以注释

#coding:utf-8
'''
Created on 2016/4/24
@author: Gamer Think
'''
#导入NearestNeighbor包 和 numpy
from sklearn.neighbors import NearestNeighbors
import numpy as np

#定义一个数组
X = np.array([[-1,-1],
[-2,-1],
[-3,-2],
[1,1],
[2,1],
[3,2]
])
"""
NearestNeighbors用到的参数解释
n_neighbors=5,默认值为5，表示查询k个最近邻的数目
algorithm='auto',指定用于计算最近邻的算法，auto表示试图采用最适合的算法计算最近邻
fit(X)表示用X来训练算法
"""
nbrs = NearestNeighbors(n_neighbors=3, algorithm="ball_tree").fit(X)
#返回距离每个点k个最近的点和距离指数，indices可以理解为表示点的下标，distances为距离
distances, indices = nbrs.kneighbors(X)
print indices
print distances

#输出的是求解n个最近邻点后的矩阵图，1表示是最近点，0表示不是最近点
print nbrs.kneighbors_graph(X).toarray()


使用scikit-learn的KNN算法进行分类的一个实例，使用数据集依旧是iris(鸢尾花)数据集

<span style="font-size:18px;">#coding:utf-8
'''
Created on 2016年4月24日

@author: Gamer Think
'''
from sklearn import neighbors
import sklearn

#查看iris数据集
print iris

knn = neighbors.KNeighborsClassifier()
#训练数据集
knn.fit(iris.data, iris.target)
#预测
predict = knn.predict([[0.1,0.2,0.3,0.4]])
print predict
print iris.target_names[predict]</span>

[0]    #第0类
['setosa']    #第0类对应花的名字

使用python实现的KNN算法进行分类的一个实例，使用数据集依旧是iris(鸢尾花)数据集，只不过将其保存在iris.txt文件中

<span style="font-size:18px;"> #-*- coding: UTF-8 -*-
'''
Created on 2016/4/24

'''
import csv     #用于处理csv文件
import random    #用于随机数
import math
import operator  #
from sklearn import neighbors

#加载数据集
with open(filename,"rb") as csvfile:
dataset = list(lines)
for x in range(len(dataset)-1):
for y in range(4):
dataset[x][y] = float(dataset[x][y])
if random.random()<split:
trainingSet.append(dataset[x])
else:
testSet.append(dataset[y])

#计算距离
def euclideanDistance(instance1,instance2,length):
distance = 0
for x in range(length):
distance = pow((instance1[x] - instance2[x]),2)
return math.sqrt(distance)

#返回K个最近邻
def getNeighbors(trainingSet,testInstance,k):
distances = []
length = len(testInstance) -1
#计算每一个测试实例到训练集实例的距离
for x in range(len(trainingSet)):
dist = euclideanDistance(testInstance, trainingSet[x], length)
distances.append((trainingSet[x],dist))
#对所有的距离进行排序
distances.sort(key=operator.itemgetter(1))
neighbors = []
#返回k个最近邻
for x in range(k):
neighbors.append(distances[x][0])
return neighbors

#对k个近邻进行合并，返回value最大的key
def getResponse(neighbors):
for x in range(len(neighbors)):
response = neighbors[x][-1]
else:
#排序

#计算准确率
def getAccuracy(testSet,predictions):
correct = 0
for x in range(len(testSet)):
if testSet[x][-1] == predictions[x]:
correct+=1
return (correct/float(len(testSet))) * 100.0

def main():
trainingSet = []  #训练数据集
testSet = []      #测试数据集
split = 0.67      #分割的比例
print "Train set :" + repr(len(trainingSet))
print "Test set :" + repr(len(testSet))

predictions = []
k = 3
for x in range(len(testSet)):
neighbors = getNeighbors(trainingSet, testSet[x], k)
result = getResponse(neighbors)
predictions.append(result)
print ">predicted = " + repr(result) + ",actual = " + repr(testSet[x][-1])
accuracy = getAccuracy(testSet, predictions)
print "Accuracy:" + repr(accuracy) + "%"

if __name__ =="__main__":
main()  </span>

5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4.0,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3.0,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3.0,5.0,1.7,Iris-versicolor
6.0,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1.0,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1.0,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor?
5.6,3.0,4.1,1.3,Iris-versicolor
5.5,2.5,4.0,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3.0,4.6,1.4,Iris-versicolor
5.8,2.6,4.0,1.2,Iris-versicolor
5.0,2.3,3.3,1.0,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3.0,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3.0,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3.0,5.8,2.2,Iris-virginica
7.6,3.0,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2.0,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3.0,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6.0,2.2,5.0,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2.0,Iris-virginica
7.7,2.8,6.7,2.0,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6.0,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3.0,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3.0,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica

4
1

微信公众号【数据与算法联盟】

扫码关注公众号，不定期推送实战文章！

扫码加我微信，拉你进数据算法大佬群！
个人资料
• 访问：1066115次
• 积分：11758
• 等级：
• 排名：第1530名
• 原创：227篇
• 转载：22篇
• 译文：2篇
• 评论：343条
个人简介
姓名：Thinkgamer

Github：https://github.com/thinkgamer

主攻：云计算/python/数据分析

程度：熟悉/熟悉/熟悉

微信：gyt13342445911

Email：thinkgamer@163.com

工作状态：在职ing

心灵鸡汤：只要努力，你就是下一个大牛...