关闭

scikit-learn学习之K最近邻算法(KNN)

标签: knnscikit-learnpython
18688人阅读 评论(19) 收藏 举报
分类:
======================================================================
本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正   

======================================================================

决策树的算法分析与Python代码实现请参考之前的一篇博客:K最近邻Python实现    接下来我主要演示怎么使用Scikit-Learn完成决策树算法的调用


Scikit-Learn中 sklearn.neighbors的函数包括(点击查看来源URL

sklearn.neighbors: Nearest Neighbors

The sklearn.neighbors module implements the k-nearest neighbors algorithm.

User guide: See the Nearest Neighbors section for further details.

neighbors.NearestNeighbors([n_neighbors, ...])Unsupervised learner for implementing neighbor searches.
neighbors.KNeighborsClassifier([...])Classifier implementing the k-nearest neighbors vote.
neighbors.RadiusNeighborsClassifier([...])Classifier implementing a vote among neighbors within a given radius
neighbors.KNeighborsRegressor([n_neighbors, ...])Regression based on k-nearest neighbors.
neighbors.RadiusNeighborsRegressor([radius, ...])Regression based on neighbors within a fixed radius.
neighbors.NearestCentroid([metric, ...])Nearest centroid classifier.
neighbors.BallTreeBallTree for fast generalized N-point problems
neighbors.KDTreeKDTree for fast generalized N-point problems
neighbors.LSHForest([n_estimators, radius, ...])Performs approximate nearest neighbor search using LSH forest.
neighbors.DistanceMetricDistanceMetric class
neighbors.KernelDensity([bandwidth, ...])Kernel Density Estimation
neighbors.kneighbors_graph(X, n_neighbors[, ...])Computes the (weighted) graph of k-Neighbors for points in X
neighbors.radius_neighbors_graph(X, radius)Computes the (weighted) graph of Neighbors for points in X

首先看一个简单的小例子:

Finding the Nearest Neighbors

sklearn.neighbors.NearestNeighbors具体说明查看:URL  在这只是将用到的加以注释

#coding:utf-8
'''
Created on 2016/4/24
@author: Gamer Think
'''
#导入NearestNeighbor包 和 numpy
from sklearn.neighbors import NearestNeighbors
import numpy as np

#定义一个数组
X = np.array([[-1,-1],
              [-2,-1],
              [-3,-2],
              [1,1],
              [2,1],
              [3,2]
              ])
"""
NearestNeighbors用到的参数解释
n_neighbors=5,默认值为5,表示查询k个最近邻的数目
algorithm='auto',指定用于计算最近邻的算法,auto表示试图采用最适合的算法计算最近邻
fit(X)表示用X来训练算法
"""
nbrs = NearestNeighbors(n_neighbors=3, algorithm="ball_tree").fit(X)
#返回距离每个点k个最近的点和距离指数,indices可以理解为表示点的下标,distances为距离
distances, indices = nbrs.kneighbors(X)
print indices
print distances
输出结果为:


执行

#输出的是求解n个最近邻点后的矩阵图,1表示是最近点,0表示不是最近点
print nbrs.kneighbors_graph(X).toarray()


 KDTree and BallTree Classes
#测试 KDTree
'''
leaf_size:切换到蛮力的点数。改变leaf_size不会影响查询结果,
                          但能显著影响查询和存储所需的存储构造树的速度。
                        需要存储树的规模约n_samples / leaf_size内存量。
                        为指定的leaf_size,叶节点是保证满足leaf_size <= n_points < = 2 * leaf_size,
                        除了在的情况下,n_samples < leaf_size。
                        
metric:用于树的距离度量。默认'minkowski与P = 2(即欧氏度量)。
                  看到一个可用的度量的距离度量类的文档。
       kd_tree.valid_metrics列举这是有效的基础指标。
'''
from sklearn.neighbors import KDTree
import numpy as np
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
kdt = KDTree(X,leaf_size=30,metric="euclidean")
print kdt.query(X, k=3, return_distance=False)


#测试 BallTree
from sklearn.neighbors import BallTree
import numpy as np
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
bt = BallTree(X,leaf_size=30,metric="euclidean")
print bt.query(X, k=3, return_distance=False)

其输出结果均为:


这是在小数据集的情况下并不能看到他们的差别,当数据集变大时,这种差别便显而易见了

使用scikit-learn的KNN算法进行分类的一个实例,使用数据集依旧是iris(鸢尾花)数据集

<span style="font-size:18px;">#coding:utf-8
'''
Created on 2016年4月24日

@author: Gamer Think
'''
from sklearn.datasets import load_iris
from sklearn import neighbors
import sklearn

#查看iris数据集
iris = load_iris()
print iris

knn = neighbors.KNeighborsClassifier()
#训练数据集
knn.fit(iris.data, iris.target)
#预测
predict = knn.predict([[0.1,0.2,0.3,0.4]])
print predict
print iris.target_names[predict]</span>
预测结果为:

[0]    #第0类
['setosa']    #第0类对应花的名字

使用python实现的KNN算法进行分类的一个实例,使用数据集依旧是iris(鸢尾花)数据集,只不过将其保存在iris.txt文件中

<span style="font-size:18px;"> #-*- coding: UTF-8 -*- 
'''
Created on 2016/4/24

@author: Administrator
'''
import csv     #用于处理csv文件
import random    #用于随机数
import math         
import operator  #
from sklearn import neighbors

#加载数据集
def loadDataset(filename,split,trainingSet=[],testSet = []):
    with open(filename,"rb") as csvfile:
        lines = csv.reader(csvfile)
        dataset = list(lines)
        for x in range(len(dataset)-1):
            for y in range(4):
                dataset[x][y] = float(dataset[x][y])
            if random.random()<split:
                trainingSet.append(dataset[x])
            else:
                testSet.append(dataset[y])

#计算距离
def euclideanDistance(instance1,instance2,length):
    distance = 0
    for x in range(length):
        distance = pow((instance1[x] - instance2[x]),2)
    return math.sqrt(distance)

#返回K个最近邻
def getNeighbors(trainingSet,testInstance,k):
    distances = []
    length = len(testInstance) -1
    #计算每一个测试实例到训练集实例的距离
    for x in range(len(trainingSet)):
        dist = euclideanDistance(testInstance, trainingSet[x], length)
        distances.append((trainingSet[x],dist))
    #对所有的距离进行排序
    distances.sort(key=operator.itemgetter(1))
    neighbors = []
    #返回k个最近邻
    for x in range(k):
        neighbors.append(distances[x][0])
    return neighbors

#对k个近邻进行合并,返回value最大的key
def getResponse(neighbors):
    classVotes = {}
    for x in range(len(neighbors)):
        response = neighbors[x][-1]
        if response in classVotes:
            classVotes[response]+=1
        else:
            classVotes[response] = 1
    #排序
    sortedVotes = sorted(classVotes.iteritems(),key = operator.itemgetter(1),reverse =True)
    return sortedVotes[0][0]

#计算准确率
def getAccuracy(testSet,predictions):
    correct = 0
    for x in range(len(testSet)):
        if testSet[x][-1] == predictions[x]:
            correct+=1
    return (correct/float(len(testSet))) * 100.0

def main():
    trainingSet = []  #训练数据集
    testSet = []      #测试数据集
    split = 0.67      #分割的比例
    loadDataset(r"iris.txt", split, trainingSet, testSet) 
    print "Train set :" + repr(len(trainingSet))
    print "Test set :" + repr(len(testSet))                
    
    predictions = []
    k = 3
    for x in range(len(testSet)):
        neighbors = getNeighbors(trainingSet, testSet[x], k)
        result = getResponse(neighbors)
        predictions.append(result)
        print ">predicted = " + repr(result) + ",actual = " + repr(testSet[x][-1])
    accuracy = getAccuracy(testSet, predictions)
    print "Accuracy:" + repr(accuracy) + "%"

if __name__ =="__main__":
    main()  </span>

附iris.txt文件的内容

5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4.0,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3.0,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3.0,5.0,1.7,Iris-versicolor
6.0,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1.0,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1.0,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor?
5.6,3.0,4.1,1.3,Iris-versicolor
5.5,2.5,4.0,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3.0,4.6,1.4,Iris-versicolor
5.8,2.6,4.0,1.2,Iris-versicolor
5.0,2.3,3.3,1.0,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3.0,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3.0,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3.0,5.8,2.2,Iris-virginica
7.6,3.0,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2.0,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3.0,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6.0,2.2,5.0,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2.0,Iris-virginica
7.7,2.8,6.7,2.0,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6.0,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3.0,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3.0,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica

4
1
查看评论

sklearn基本用法----knn

K-nn算法        在模式识别中,k-邻近算法(k-nn)是用于分类和回归的非参数方法。所谓K邻近,就是k个最近的邻居,意思是每个样本都可以用它最接近的k个邻居来代表。      ...
  • clover_daisy
  • clover_daisy
  • 2017-01-26 13:11
  • 1717

用Python开始机器学习(4:KNN分类算法)

KNN分类算法(K-Nearest-Neighbors Classification)是
  • lsldd
  • lsldd
  • 2014-11-23 17:24
  • 42880

机器学习sklearn knn

from __future__ import print_function from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn.neighbors imp...
  • qq_32005671
  • qq_32005671
  • 2017-03-07 14:31
  • 124

sklearn knn与kmeans

《机器学习技法》最后一次作业,共有三个编程实验,倒数两个是knn和kmeans。照例用sklearn做,很快。 knn:分别求k=1和k=5时的Ein和Eout. from sklearn import neighbors import numpy as np train_data = np.lo...
  • u012420309
  • u012420309
  • 2016-01-05 21:17
  • 1091

用Python开始机器学习(4:KNN分类算法) sklearn做KNN算法 python

1、KNN分类算法 KNN分类算法(K-Nearest-Neighbors Classification),又叫K近邻算法,是一个概念极其简单,而分类效果又很优秀的分类算法。 他的核心思想就是,要确定测试样本属于哪一类,就寻找所有训练样本中与该测试样本“距离”最近的前K个样本,然后看这K个样本大部分...
  • sherri_du
  • sherri_du
  • 2016-08-03 18:19
  • 1939

kaggle的手写识别比赛(python sklearn-KNN)

如果你想知道怎么玩一下kaggle?那这篇文章就非常适合你了。 Kaggle练手项目:https://www.kaggle.com/c/digit-recognizer 0~9的手写体识别。 项目简要: 训练集:第一列为标签列,其余784列为对应像素点的明亮程度(28*28的图像) 测试集:给...
  • l18930738887
  • l18930738887
  • 2016-02-28 23:46
  • 2092

30分钟学会用scikit-learn的基本回归方法(线性、决策树、SVM、KNN)和集成方法(随机森林,Adaboost和GBRT)

真注:本教程是本人尝试使用scikit-learn的一些经验,scikit-learn帧的超级容易上手,简单实用。30分钟学会用调用基本的回归方法和集成方法应该是够了。 本文主要参考了scikit-learn的官方网站 前言:本教程主要使用了numpy的最最基本的功能,用于生成数据,matplo...
  • u010900574
  • u010900574
  • 2016-09-26 03:16
  • 9572

数据挖掘学习札记:KNN算法(一)

参考: 1. KNN算法介绍,Python程序和一个简单算例 2. k-nearest neighbor algorithm 基本想法: 在距离空间里,如果一个样本的最接近的k个邻居里,绝大多数属于某个类别,则该样本也属于这个类别。俗话叫,“随大流”。 ...
  • zhaoyl03
  • zhaoyl03
  • 2013-03-14 19:54
  • 32219

KNN算法理解

一、算法概述 1、kNN算法又称为k近邻分类(k-nearest neighbor classification)算法。 最简单平凡的分类器也许是那种死记硬背式的分类器,记住所有的训练数据,对于新的数据则直接和训练数据匹配,如果存在相同属性的训练数据,则直接用它的分类来作为新数据的分类。...
  • jmydream
  • jmydream
  • 2013-03-06 20:51
  • 70080

kNN(K-Nearest Neighbor)最邻近规则分类

KNN最邻近规则,主要应用领域是对未知事物的识别,即判断未知事物属于哪一类,判断思想是,基于欧几里得定理,判断未知事物的特征和哪一类已知事物的的特征最接近; K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:...
  • xlm289348
  • xlm289348
  • 2013-05-02 16:26
  • 82079
    微信公众号【数据与算法联盟】

    扫码关注公众号,不定期推送实战文章!

    扫码加我微信,拉你进数据算法大佬群!
    个人资料
    • 访问:1066115次
    • 积分:11758
    • 等级:
    • 排名:第1530名
    • 原创:227篇
    • 转载:22篇
    • 译文:2篇
    • 评论:343条
    个人简介
    姓名:Thinkgamer

    Github:https://github.com/thinkgamer

    主攻:云计算/python/数据分析

    程度:熟悉/熟悉/熟悉

    微信:gyt13342445911

    Email:thinkgamer@163.com

    工作状态:在职ing

    心灵鸡汤:只要努力,你就是下一个大牛...

    hadoop/spark/机器学习群:279807394(大神建的群,蹭个管理员)

    欢迎骚扰........
    博客专栏
    最新评论