最小生成树:Kruskal算法

原创 2016年05月31日 11:18:37

用并查集来判断是否存在回路,详见算法导论


http://acm.hdu.edu.cn/showproblem.php?pid=1863


Problem Description
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
 

Input
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N 
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
 

Output
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
 

Sample Input
3 3 1 2 1 1 3 2 2 3 4 1 3 2 3 2 0 100
 

Sample Output
3 ?


#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;

struct edge{
    int a;
    int b;
    int w;
}e[110];

struct cmp{
    bool operator() (const edge& a, const edge& b){
        return a.w < b.w;
    }
};

int set[110];

int find(int x){
    int r = x;
    while (r != set[r]){
        r = set[r];
    }

    int i = x;
    while (set[i] != r){
        int j = set[i];
        set[i] = r;
        i = j;
    }

    return r;
}


int main(){

    int N, M;

    //freopen("test.txt", "r", stdin);

    while (scanf("%d%d", &N, &M)!=EOF){
        if (N == 0) break;
        for (int i = 0; i < N; i++){
            cin >> e[i].a >> e[i].b >> e[i].w;
        }

        for (int i = 1; i <= M; i++){
            set[i] = i;
        }

        sort(e, e + N, cmp());

        int cntw = 0, cntn = 0;

        for (int i = 0; i < N; i++){
            int a = e[i].a;
            int b = e[i].b;

            int ra = find(a);
            int rb = find(b);

            if (ra != rb){
                set[rb] = ra;

                cntw += e[i].w;
                //cntn++;
            }

        }

        for (int i = 1; i <= M; i++){
            if (set[i] == i)
                cntn++;
        }

        if (cntn == 1){
            cout << cntw << endl;
        }
        else{
            cout << "?" << endl;
        }

    }

    return 0;
}

统计跟为1AC,但是统计MST边个数为N-1出错,不知道为什么
版权声明:本文为博主原创文章,未经博主允许不得转载。

数据结构:最小生成树--Kruskal算法

Kruskal算法 求解最小生成树的另一种常见算法是Kruskal算法,它比Prim算法更直观。从直观上看,Kruskal算法的做法是:每次都从剩余边中选取权值最小的,当然,这条边不能使已有...
  • zhangxiangDavaid
  • zhangxiangDavaid
  • 2014年08月07日 11:45
  • 5140

Matlab实现Kruskal最小生成树算法

% Kruskal.m % Kruskal算法求最小生成树 clc;clear; a(1,2)=50; a(1,3)=60; a(2,4)=65; a(2,5)=40; a(3,4)=52;a...
  • lzcnb
  • lzcnb
  • 2016年03月20日 11:09
  • 2319

最小生成树 kruskal算法 C++实现

#include #include #include #define Inf 0x7fffffff using namespace std; struct node { int u,v;...
  • gl486546
  • gl486546
  • 2017年08月22日 21:46
  • 329

最小生成树 kruskal算法+时间复杂度

Kruskal算法与Prime算法的区别就在于一个是以边为目标进行考虑,一个以点为目标进行考虑。 由于Kruskal算法以边进行考虑,就涉及到边可能属于两个连通块,这时候就涉及到连通块的判断查找合...
  • liuxingwan
  • liuxingwan
  • 2016年10月08日 17:34
  • 2877

Kruskal算法求最小生成树

求加权连通图的最小生成树的算法。kruskal算法总共选择n- 1条边,(共n条边)所使用的贪婪准则是:从剩下的边中选择一条不会产生环路的具有最小耗费的边加入已选择的边的集合中。注意到所选取的边若...
  • a197p
  • a197p
  • 2015年05月27日 13:50
  • 1130

最小生成树Kruskal算法朴素版 C语言实现

最小生成树Kruskal算法朴素版 C语言实现
  • sunshineacm
  • sunshineacm
  • 2017年12月11日 22:15
  • 108

Kruskal算法求图的最小生成树的完整C代码

求加权连通图的最小生成树的算法。kruskal算法总共选择n- 1条边,所使用的贪婪准则是:从剩下的边中选择一条不会产生环路的具有最小耗费的边加入已选择的边的集合中。注意到所选取的边若产生环路则不可能...
  • u014488381
  • u014488381
  • 2014年11月24日 16:41
  • 8340

最小生成树问题中Kruskal算法和Prim算法的C语言实现

最小生成树问题中 Kruskal算法 和 Prim算法 的C语言实现
  • mosquitolxw
  • mosquitolxw
  • 2010年12月04日 10:13
  • 4338

贪婪算法-最小生成树-Kruskal算法

最小生成树是找出图中包括所有结点的联通子图,使得其所有的边的权重之和最小。 Kruskal 算法提供一种在 O(ElogV) 运行时间确定最小生成树的方案。其选择的贪心策略就是,每次都选择权重最小...
  • u010726042
  • u010726042
  • 2016年04月10日 21:47
  • 703

最小生成树 Kruskal算法

并查集的应用 ,Kruskal,最小生成树算法。 求加权连通图的最小生成树的算法。kruskal算法总共选择n- 1条边,(共n个点); 每次从剩下的边中选择一条不会产生环路的具有最小耗费(最小权值...
  • chaiwenjun000
  • chaiwenjun000
  • 2015年08月11日 07:16
  • 681
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最小生成树:Kruskal算法
举报原因:
原因补充:

(最多只允许输入30个字)