图像分割的三类方法

原创 2015年11月19日 22:15:35

分为3类:

一.基于边缘检测的分割方法:

(1)并行边缘检测

         定义:并行边缘检测当前正在检测的像素点以及该像素点相邻的一些像素点,决定该像素点是否属于欲检测的边缘 并行微分算子法

         基于曲面拟合的方法:用一个曲面来拟合一个小窗口内的数据,然后根据该曲面决定边缘点进行边缘检测。
         活动轮廓与水平集:通过使用图像数据获得的约束信息和目标的位置、大小和形状等先验知识,对目标进行分割、匹配和跟踪分析

(2)串行边缘检测

         当前像素点是否属于欲检测的边缘,取决于先前像素的验证结果
         具体步骤:
         (1)确定起始边界点,顺序搜索将从此开始。
         (2)选择搜索策略,并根据一定的机理依次检测新的边界点
         (3)设定终止条件,并当搜索进程结束时使之停下来
         举例:边界跟踪:由梯度图中一个边缘点出发,依次搜索并连接相邻边缘点从而逐步检测出目标的边界。(噪声较小的图像分割效果好)

二.基于区域的分割方法:

        阈值分割算法:利用图像中要提取的目标和背景在灰度特性上的差异,把图像视为具有不同灰度级的两类区域的总和,选取合适的阈值。
        步骤:
       (1)确定一个处于图像灰度级范围内的灰度阈值T
       (2)将图像中每个像素的灰度值都与这个阈值比较,若大于阈值为1,小于阈值为0.
       (1)灰度直方图峰谷法:依据图像的直方图确定图像二值化的过程就是在直方图双峰之间的谷底处灰度值作为阈值

        (2)最大类间方差法
      最小二乘法的基础上推导得出求最佳阈值的方法,以灰度t为门限将图像分割成2个区域,灰度级1~t为像素区域A(背景类),t+1~L-1为像素区域B(目标类),AB的概率,
       注:方差越大,两部分图像的差别越大,错分的概率变小

       (3)最大熵自动阈值法:一幅图像中灰度起伏值变化较大,计算出的熵越小。
         图像中的目标和背景各自对应区域中灰度值的变化比较平缓的部分,只要将目标和背景正确分割,目标和背景中所求信息量都大,反之,如果阈值选取不当,会引目标     中的信息量或背景中的信息量减少,而达不到总的信息量最大

        区域分割算法:
        实质就是把具有某种相似性质的像素点连通起来,构成最终的分割区域。
      1.区域生长:从全图出发,按照区域属性特征一致的准则,决定每个像素的区域归属,形成区域图
         具体做法
         选定图像中要分割的目标内的一小块作为种子区域,再在种子区域的基础上不断地将其周围的像素点以一定的准则加入其中,将这些新像素点作为新的种子区域,最后 将          代表该物体的所有像素点结合成一个区域

      2.分裂合并
         基本思想是从整幅图像开始通过不断分裂得到各个区域,实际中常先把图像分成任意大小且不重叠的区域,然后再合并或分裂达到分割的要求。

      三.基于特定理论的分割方法

      1.基于数学形态学的分割算法
       腐蚀:对一个图像进行探测,以便找到图像中放置该结构元素的区域,可以消除小且无意义的物体
       膨胀:结构元素B膨胀输入图像A,将B相对原点旋转180度,得-B,-B对A的补集腐蚀,再求补集。
       开启:先腐蚀再膨胀,去掉目标外的孤立点消除细小物体,在纤细处分离物体和平滑较大物体边界的作用
       闭合:先膨胀再腐蚀,去掉目标内的孔具有填充物体内细小空间,连接临近物体和平滑边界的作用
       应用:图像的平滑滤波、图像的边缘检测
      2.基于小波变换的图像分割算法

       涉及的算法很多,需要实时补充。


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

图像分割方法介绍

图像分割是从图像处理到图像分析的关键技术。图像分割的种类和方法很多,有些分割算法可直接用于任何图像,而另一些算法只能适用于分割特殊类别的图像。有些算法需要先对图像进行粗分割,因为它们需要从图像中提取出...

OpenCV2学习笔记(四):两种图像分割方法比较

此次研究两种图像分割法,分别是基于形态学的分水岭算法和基于图割理论的GrabCut算法。OpenCV均提供了两张算法或其变种。鉴于研究所需,记录一些知识点,开发平台为OpenCV2.4.9+Qt5.3...

【OpenCV学习笔记 023】两种图像分割方法比较

此次研究两种图像分割法,分别是基于形态学的分水岭算法和基于图割理论的GrabCut算法。OpenCV均提供了两张算法或其变种。鉴于研究所需,记录一些知识点,开发平台为OpenCV2.4.9+Qt5.3...

图像分割有哪些方法

·1 基于区域的图像分割     图像分割中常用的直方图门限法、区域生长法、基于图像的随机场模型法、松弛标记区域分割法等均属于基于区域的方法。     (1)直方图门限分割就是在一定的准则...

多分辨率下的彩色图像分割方法

1 引 言   图像分割是图像处理的主要问题,属于计算机视觉领域低层次视觉中的问题。目前,对于灰度图像的分割,已经有相当多的成果和结论,而对彩色图像的分割,由于比较复杂、运算量大,研究还比较少。彩色...

图像分割方法

  • 2015-08-10 13:28
  • 1.39MB
  • 下载

图像分割方法综述

From:  变分方法与模糊聚类在图像分割中的应用研究 这里主要简单介绍几类经典的方法: 基于边缘检测的方法 基于边缘检测的方法主要是通过检测出区域的边缘来进行分...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)