【第22期】观点:IT 行业加班,到底有没有价值?

卷积神经网络_图像卷积解释

原创 2016年08月28日 14:55:01

学习卷积神经网络一段时间了,记录下关于卷积神经网络中图像卷积的原理。

互相学习交流。

1、人工神经网络

首先看下人工神经网络感知器的原理图,这个不是重点,但是卷积神经网络由此而来,所以截取材料如下:

 

类似wx + b的形式,其中·       a1~an为输入向量,当然,也常用x1~xn表示输入·       w1~wn为权重·       b为偏置bias·       f为激活函数·       t为输出

2、卷积神经网络


从图中可以看出,卷积神经网络实际就是利用卷积代替全连接,好处就是可以显著减少权重矩阵的参数,提高训练效率,详细请自行查阅资料。

我们知道对于全连接网络输出z=wx+b,而对于卷积神经网络,实际公式应该写成z=wUx+b,权重w和输入x做卷积。这是对于一维卷积层而言,而在图像处理中,图像是以二维矩阵的形式输入到神经网络中,因此我们需要二维卷积。下面介绍图像二维卷积。

3、图像二维卷积


上图中,最左侧的三个矩阵就是输入,就是所谓的FeatureMaps(特征图),中间有两个滤波器Filter w0和Filter W1,每个滤波器含有三个小矩阵,这三个小矩阵我们把它们叫做卷积核,也叫卷积核算子或者卷积算子,这两个滤波器对应个着最右面的两个输出矩阵。实际上就是每一个滤波器提取图像的一种特征,所以两个滤波器就对应着两个输出矩阵,我们把每一组输出也叫做一组特征映射。每个特征图分别对应一个卷积核,也就是说一个特征图上共享一个卷积核,这也就是卷积神经网络所谓的权值共享机制。具体的计算方式可以参照http://blog.csdn.net/real_myth/article/details/51824193

此时的输入就不是一个数了,而是矩阵,左边这三个矩阵对应着就是输入X0,X1,X2,而此时的Z就是输出矩阵Z=WUX+B,W为权重矩阵,B为偏置矩阵。



如上图,L-1层输入X0,X1,X2,L层的X是输出矩阵Z经过激励函数得到的结果。即为:


其中f为激励函数。我们知道卷积神经网络分多层,其中卷积层部分都是按照上述原理进行。至于卷积神经网络的局部感知和下采样在此不赘述。


版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

cuda-convnet 卷积神经网络 一般性结构卷积核个数 和 输入输出的关系以及输入输出的个数的说明:

卷积说明: 输入是3个32*32, 共3*1024=3072。每条边padding为2,则内存里实际为3个36*36. 卷积核个数是3维的5*5分别与3个输入进行卷积运算,得到3维的32*32的输出,...

深度卷积神经网络学习笔记1:卷积的一些相关概念

转载:http://www.cnblogs.com/njust-ycc/p/5721381.html 1.卷积操作实质:       输入图像(input volume),在深度方向上由很多sl...
  • meadl
  • meadl
  • 2016-10-12 21:44
  • 379

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

卷积神经网络及其在图像处理中的应用

一,前言卷积神经网络(Constitutional Neural Networks, CNN)是在多层神经网络的基础上发展起来的针对图像分类和识别而特别设计的一种深度学习方法。先回顾一下多层神经网络:...
  • taigw
  • taigw
  • 2016-01-18 00:19
  • 23607

卷积神经网络CNN:Tensorflow实现(以及对卷积特征的可视化)

本文主要是实现了一个简单的卷积神经网络,并对卷积过程中的提取特征进行了可视化. 卷积神经网络最早是为了解决图像识别的问题,现在也用在时间序列数据和文本数据处理当中,卷积神经网络对于数据特征的...

深度学习算法--卷积神经网络

卷积神经网络(CNN)是深度学习在图像处理领域的一个应用。在学习卷积神经网络之前,先了解下它的两个基本思想: 1、局部感受: 一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素...

卷积:如何成为一个很厉害的神经网络

本文首发于:https://jizhi.im/blog/post/intuitive_explanation_cnn 什么是卷积神经网络?又为什么很重要? 卷积神经网络(Convoluti...

CNN卷积神经网络学习笔记1:背景介绍

Convolutional Neural Network 卷积神经网络是基于人工神经网络提出的。人工神经网络模拟人的神经系统,由一定数量的神经元构成。在一个监督学习问题中,有一组训练数据(xi,yi)...

利用卷积神经网络(CNN)提取图像特征

一、前言本篇文章主要介绍了CNN网络中卷积层的计算过程,详细了解CNN的其它信息可以参考:技术向:一文读懂卷积神经网络。卷积神经网络(CNN)是局部连接网络。相对于全连接网络其最大的特点就是:局部连接...
  • jnulzl
  • jnulzl
  • 2016-05-17 22:32
  • 13794

用反卷积(Deconvnet)可视化理解卷积神经网络

可视化理解卷积神经网络 原文地址:http://blog.csdn.net/hjimce/article/details/50544370 作者:hjimce 一、相关理论 ...

cs231n 用卷积神经网络来进行图像识别

博主是大二学生,英语6级水平,翻译有不对的地方请从下面留言 转载请注明出处:blog,csdn.net/imxtg 原文链接:http://cs231n.github.io/classificatio...
  • imxtg
  • imxtg
  • 2016-04-02 15:02
  • 4471
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)