卷积神经网络_图像卷积解释

原创 2016年08月28日 14:55:01

学习卷积神经网络一段时间了,记录下关于卷积神经网络中图像卷积的原理。

互相学习交流。

1、人工神经网络

首先看下人工神经网络感知器的原理图,这个不是重点,但是卷积神经网络由此而来,所以截取材料如下:

 

类似wx + b的形式,其中·       a1~an为输入向量,当然,也常用x1~xn表示输入·       w1~wn为权重·       b为偏置bias·       f为激活函数·       t为输出

2、卷积神经网络


从图中可以看出,卷积神经网络实际就是利用卷积代替全连接,好处就是可以显著减少权重矩阵的参数,提高训练效率,详细请自行查阅资料。

我们知道对于全连接网络输出z=wx+b,而对于卷积神经网络,实际公式应该写成z=wUx+b,权重w和输入x做卷积。这是对于一维卷积层而言,而在图像处理中,图像是以二维矩阵的形式输入到神经网络中,因此我们需要二维卷积。下面介绍图像二维卷积。

3、图像二维卷积


上图中,最左侧的三个矩阵就是输入,就是所谓的FeatureMaps(特征图),中间有两个滤波器Filter w0和Filter W1,每个滤波器含有三个小矩阵,这三个小矩阵我们把它们叫做卷积核,也叫卷积核算子或者卷积算子,这两个滤波器对应个着最右面的两个输出矩阵。实际上就是每一个滤波器提取图像的一种特征,所以两个滤波器就对应着两个输出矩阵,我们把每一组输出也叫做一组特征映射。每个特征图分别对应一个卷积核,也就是说一个特征图上共享一个卷积核,这也就是卷积神经网络所谓的权值共享机制。具体的计算方式可以参照http://blog.csdn.net/real_myth/article/details/51824193

此时的输入就不是一个数了,而是矩阵,左边这三个矩阵对应着就是输入X0,X1,X2,而此时的Z就是输出矩阵Z=WUX+B,W为权重矩阵,B为偏置矩阵。



如上图,L-1层输入X0,X1,X2,L层的X是输出矩阵Z经过激励函数得到的结果。即为:


其中f为激励函数。我们知道卷积神经网络分多层,其中卷积层部分都是按照上述原理进行。至于卷积神经网络的局部感知和下采样在此不赘述。


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

图像卷积及Caffe中的卷积实现

图像卷积及Caffe中的卷积实现   本文简单介绍了卷积、图像卷积以及Caffe中的卷积实现等相关知识,写作过程中参考了很多很赞的资料,有兴趣的读者可以从【参考资料】查看。

卷积层感受野和坐标映射

转载自http://blog.cvmarcher.com/posts/2015/05/17/cnn-trick/ 如有版权问题,请联系博主删除本博客 Receptive Field (感受...

Deep Learning(深度学习)学习笔记整理系列之(七)

Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 201...

卷积神经网络概念与原理

一、卷积神经网络的基本概念        受Hubel和Wiesel对猫视觉皮层电生理研究启发,有人提出卷积神经网络(CNN),Yann Lecun 最早将CNN用于手写数字识别并一直保持了其在...

卷积神经网络-图像卷积的概念

连续空间的卷积定义是 f(x)与g(x)的卷积是 f(t-x)g(x) 在t从负无穷到正无穷的积分值.t-x要在f(x)定义域内,所以看上去很大的积分实际上还是在一定范围的. 实际的过程就是f(x...

卷积神经网络学习--卷积和池化

卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT-CONV-RELU-POOL-FC。本文主要针对卷积层和池化层涉及的技术进行学习和整理,有理解的不对的地方希望能给...

深度学习系列(十):从卷积计算到卷积神经网络CNN

前面已经介绍了深度学习的一个模型框架:自编码器,那么从本节后来再来简单介绍一下深度学习的另一个模型框架:卷积神经网络CNN,关于CNN可能大家听说过的不能在多了,网上资源众多,各路大神总结的也是无比完...
  • on2way
  • on2way
  • 2016-01-16 15:25
  • 3297

深度卷积神经网络学习笔记2:步长不为1的卷积前向传播和反向传播

卷积层的维度计算        假设卷积层的输入大小x*x为5*5,卷积核大小k*k为3*3,步长stride为2,假设不填充,输出维度将会是(x-k)/2+1,即为2*2;如果步长为1,那么输出将会...
  • meadl
  • meadl
  • 2017-03-31 18:50
  • 1507

深度学习算法实践11---卷积神经网络(CNN)之卷积操作

卷积神经网络(CNN)主要特性有:稀疏连接和权值共享、卷积操作、池化。在前一篇博文中我们已经讨论了稀疏连接和权值共享,在本篇博文中,我们将介绍卷积操作和池化。正是由于对图像进行卷积操作,卷积神经网络才...
  • Yt7589
  • Yt7589
  • 2016-08-29 18:20
  • 4721

深度学习(DL)与卷积神经网络(CNN)学习笔记随笔-02-基于Python的卷积运算

深度学习(DL)与卷积神经网络(CNN)学习笔记随笔-02-基于Python的卷积运算 -- 在python中对图片进行卷积操作运算的一个示例程序, 源代码分析:(注意,如果直接保存以下代码,一定要另...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)