卷积神经网络_图像卷积解释

原创 2016年08月28日 14:55:01

学习卷积神经网络一段时间了,记录下关于卷积神经网络中图像卷积的原理。

互相学习交流。

1、人工神经网络

首先看下人工神经网络感知器的原理图,这个不是重点,但是卷积神经网络由此而来,所以截取材料如下:

 

类似wx + b的形式,其中·       a1~an为输入向量,当然,也常用x1~xn表示输入·       w1~wn为权重·       b为偏置bias·       f为激活函数·       t为输出

2、卷积神经网络


从图中可以看出,卷积神经网络实际就是利用卷积代替全连接,好处就是可以显著减少权重矩阵的参数,提高训练效率,详细请自行查阅资料。

我们知道对于全连接网络输出z=wx+b,而对于卷积神经网络,实际公式应该写成z=wUx+b,权重w和输入x做卷积。这是对于一维卷积层而言,而在图像处理中,图像是以二维矩阵的形式输入到神经网络中,因此我们需要二维卷积。下面介绍图像二维卷积。

3、图像二维卷积


上图中,最左侧的三个矩阵就是输入,就是所谓的FeatureMaps(特征图),中间有两个滤波器Filter w0和Filter W1,每个滤波器含有三个小矩阵,这三个小矩阵我们把它们叫做卷积核,也叫卷积核算子或者卷积算子,这两个滤波器对应个着最右面的两个输出矩阵。实际上就是每一个滤波器提取图像的一种特征,所以两个滤波器就对应着两个输出矩阵,我们把每一组输出也叫做一组特征映射。每个特征图分别对应一个卷积核,也就是说一个特征图上共享一个卷积核,这也就是卷积神经网络所谓的权值共享机制。具体的计算方式可以参照http://blog.csdn.net/real_myth/article/details/51824193

此时的输入就不是一个数了,而是矩阵,左边这三个矩阵对应着就是输入X0,X1,X2,而此时的Z就是输出矩阵Z=WUX+B,W为权重矩阵,B为偏置矩阵。



如上图,L-1层输入X0,X1,X2,L层的X是输出矩阵Z经过激励函数得到的结果。即为:


其中f为激励函数。我们知道卷积神经网络分多层,其中卷积层部分都是按照上述原理进行。至于卷积神经网络的局部感知和下采样在此不赘述。


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

卷积神经网络及其在图像处理中的应用

一,前言卷积神经网络(Constitutional Neural Networks, CNN)是在多层神经网络的基础上发展起来的针对图像分类和识别而特别设计的一种深度学习方法。先回顾一下多层神经网络:...
  • taigw
  • taigw
  • 2016年01月18日 00:19
  • 32418

卷积神经网络图像风格转移 Image StyleTransfer Using Convolutional Neural Networks

Image StyleTransfer Using Convolutional Neural Networks 用不同的风格渲染图像的语义内容是一种比较难的图像处理任务。可以说,之前方法的一个主要局限...

卷积滤波器如何提取图像特征

本文首发于集智专栏:https://jizhi.im/blog/post/zen_bra 在卷积:如何成为一个很厉害的神经网络 - 知乎专栏中,热心网友提出了这样的问题: ...

卷积特征提取与池化(Pooling)——处理大型图像

在之前的章节中,我们已经很好地解决了手写体识别问题(维数为28*28)。但如果是更大的图像(维数为96*96)呢?如果你还是要学习400个特征,那么网络权重参数就有400*96*96即近400万个。 ...

卷积神经网络及其在图像处理中的应用

一,前言 卷积神经网络(Constitutional Neural Networks, CNN)是在多层神经网络的基础上发展起来的针对图像分类和识别而特别设计的一种深度学习方法。先回顾一下多层神...
  • dlaicxf
  • dlaicxf
  • 2016年07月03日 09:34
  • 1200

图像去雨算法(基于卷积网络)

图像去雨算法文章:https://pdfs.semanticscholar.org/bf10/3b3ea90f0d032d1d73dbb83ae41731ee006f.pdf 首先雨图像的通用模型为:...

opencv基本数据类型

OpenCV提供了多种基本数据类型。虽然这些数据类型在C语言中不是基本类型,但结构都很简单,可将它们作为原子类型。可以在“…/OpenCV/cxcore/include”目录下的cxtypes.h文件...

卷积神经网络-图像卷积的概念

连续空间的卷积定义是 f(x)与g(x)的卷积是 f(t-x)g(x) 在t从负无穷到正无穷的积分值.t-x要在f(x)定义域内,所以看上去很大的积分实际上还是在一定范围的. 实际的过程就是f(x...

深度卷积神经网络学习笔记1:卷积的一些相关概念

转载:http://www.cnblogs.com/njust-ycc/p/5721381.html 1.卷积操作实质:       输入图像(input volume),在深度方向上由很多sl...
  • meadl
  • meadl
  • 2016年10月12日 21:44
  • 682

卷积神经网络CNN:Tensorflow实现(以及对卷积特征的可视化)

本文主要是实现了一个简单的卷积神经网络,并对卷积过程中的提取特征进行了可视化. 卷积神经网络最早是为了解决图像识别的问题,现在也用在时间序列数据和文本数据处理当中,卷积神经网络对于数据特征的...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:卷积神经网络_图像卷积解释
举报原因:
原因补充:

(最多只允许输入30个字)