卷积神经网络_图像卷积解释

原创 2016年08月28日 14:55:01

学习卷积神经网络一段时间了,记录下关于卷积神经网络中图像卷积的原理。

互相学习交流。

1、人工神经网络

首先看下人工神经网络感知器的原理图,这个不是重点,但是卷积神经网络由此而来,所以截取材料如下:

 

类似wx + b的形式,其中·       a1~an为输入向量,当然,也常用x1~xn表示输入·       w1~wn为权重·       b为偏置bias·       f为激活函数·       t为输出

2、卷积神经网络


从图中可以看出,卷积神经网络实际就是利用卷积代替全连接,好处就是可以显著减少权重矩阵的参数,提高训练效率,详细请自行查阅资料。

我们知道对于全连接网络输出z=wx+b,而对于卷积神经网络,实际公式应该写成z=wUx+b,权重w和输入x做卷积。这是对于一维卷积层而言,而在图像处理中,图像是以二维矩阵的形式输入到神经网络中,因此我们需要二维卷积。下面介绍图像二维卷积。

3、图像二维卷积


上图中,最左侧的三个矩阵就是输入,就是所谓的FeatureMaps(特征图),中间有两个滤波器Filter w0和Filter W1,每个滤波器含有三个小矩阵,这三个小矩阵我们把它们叫做卷积核,也叫卷积核算子或者卷积算子,这两个滤波器对应个着最右面的两个输出矩阵。实际上就是每一个滤波器提取图像的一种特征,所以两个滤波器就对应着两个输出矩阵,我们把每一组输出也叫做一组特征映射。每个特征图分别对应一个卷积核,也就是说一个特征图上共享一个卷积核,这也就是卷积神经网络所谓的权值共享机制。具体的计算方式可以参照http://blog.csdn.net/real_myth/article/details/51824193

此时的输入就不是一个数了,而是矩阵,左边这三个矩阵对应着就是输入X0,X1,X2,而此时的Z就是输出矩阵Z=WUX+B,W为权重矩阵,B为偏置矩阵。



如上图,L-1层输入X0,X1,X2,L层的X是输出矩阵Z经过激励函数得到的结果。即为:


其中f为激励函数。我们知道卷积神经网络分多层,其中卷积层部分都是按照上述原理进行。至于卷积神经网络的局部感知和下采样在此不赘述。


版权声明:本文为博主原创文章,未经博主允许不得转载。

卷积神经网络图像风格转移 Image StyleTransfer Using Convolutional Neural Networks

Image StyleTransfer Using Convolutional Neural Networks 用不同的风格渲染图像的语义内容是一种比较难的图像处理任务。可以说,之前方法的一个主要局限...
  • cicibabe
  • cicibabe
  • 2017年04月28日 09:55
  • 4230

卷积神经网络及其在图像处理中的应用

一,前言 卷积神经网络(Constitutional Neural Networks, CNN)是在多层神经网络的基础上发展起来的针对图像分类和识别而特别设计的一种深度学习方法。先回顾一下多层神...
  • dlaicxf
  • dlaicxf
  • 2016年07月03日 09:34
  • 1597

[note] 深度学习 tensorflow 笔记(3) cnn 卷积神经网络

假设我们想要辨识一张图片里面是不是有猫咪的存在。 这只猫咪可以在图片的任何位置。 什么办法才能辨别这个图片里面有没有猫呢? 一个很简单的想法就是:将图片分成一些子图片的集合,逐个辨别子图片里面有...
  • u013805817
  • u013805817
  • 2016年08月08日 22:16
  • 2272

CNN卷积神经网络学习笔记1:背景介绍

Convolutional Neural Network 卷积神经网络是基于人工神经网络提出的。人工神经网络模拟人的神经系统,由一定数量的神经元构成。在一个监督学习问题中,有一组训练数据(xi,yi)...
  • happyer88
  • happyer88
  • 2015年07月05日 13:34
  • 4533

卷积神经网络

自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。...
  • xinzhangyanxiang
  • xinzhangyanxiang
  • 2014年11月29日 16:20
  • 131669

利用卷积神经网络(CNN)提取图像特征

一、前言本篇文章主要介绍了CNN网络中卷积层的计算过程,详细了解CNN的其它信息可以参考:技术向:一文读懂卷积神经网络。卷积神经网络(CNN)是局部连接网络。相对于全连接网络其最大的特点就是:局部连接...
  • jnulzl
  • jnulzl
  • 2016年05月17日 22:32
  • 27345

深度学习与计算机视觉系列(10)_细说卷积神经网络

前面九讲对神经网络的结构,组件,训练方法,原理等做了介绍。现在我们回到本系列的核心:计算机视觉,神经网络中的一种特殊版本在计算机视觉中使用最为广泛,这就是大家都知道的卷积神经网络。卷积神经网络和普通的...
  • yaoqiang2011
  • yaoqiang2011
  • 2016年01月19日 19:27
  • 47728

卷积神经网络及其在图像处理中的应用

一,前言卷积神经网络(Constitutional Neural Networks, CNN)是在多层神经网络的基础上发展起来的针对图像分类和识别而特别设计的一种深度学习方法。先回顾一下多层神经网络:...
  • taigw
  • taigw
  • 2016年01月18日 00:19
  • 37795

CNN 卷积神经网络结构

CNNcnn每一层会输出多个feature map, 每个Feature Map通过一种卷积滤波器提取输入的一种特征,每个feature map由多个神经元组成,假如某个feature map的sha...
  • zhongkeli
  • zhongkeli
  • 2016年07月07日 22:02
  • 13629

卷积特征提取与池化(Pooling)——处理大型图像

在之前的章节中,我们已经很好地解决了手写体识别问题(维数为28*28)。但如果是更大的图像(维数为96*96)呢?如果你还是要学习400个特征,那么网络权重参数就有400*96*96即近400万个。 ...
  • u012428391
  • u012428391
  • 2014年08月18日 16:49
  • 6386
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:卷积神经网络_图像卷积解释
举报原因:
原因补充:

(最多只允许输入30个字)