PCA算法及其在人脸识别上的应用

PCA(主成分分析)用于高维数据的降维,通过寻找最小均方意义下的投影方法。在人脸识别中,PCA通过计算样本协方差矩阵、求解特征根和构建投影矩阵实现。将样本投影到低维空间后,利用最近邻分类器进行识别。然而,PCA可能忽视了类别属性,丢失关键的可分性信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PCA,也即主成份分析,主要用于特征的降维。

高维数据中包含了大量的冗余并隐藏了重要关系的相关性,降维的目的就是消除冗余,减少被处理数据的数量。

PCA其实就是寻找最小均方意义下,最能代表原始数据的投影方法。


基于PCA的人脸识别步骤:

假设有n幅人脸图像(100

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值