支持向量机(SVM)理解以及在sklearn库中的简单应用

原创 2017年08月12日 12:12:43

1. 什么是支持向量机

  • 英文Support Vector Machines,简写SVM . 主要是基于支持向量来命名的,什么是支持向量后面会讲到…….最简单的SVM是用来二分类的,在深度学习崛起之前被誉为最好的现成分类器,”现成”指的是数据处理好,SVM可以直接拿来使用 …

2. 名词解释

2.1线性(不)可分 , 超平面

线性可分
上图 线性可分(绿色荧光笔直线),即一条直线完美分类,虽然有不同的分割法,这条分割线就叫做”分割超平面”,二维中直线就是一个超平面,扩展到n维中n-1维也就是超平面

线性不可分 左面这张图很明显,所谓线性不可分,则是一条直线不能完美分类

高维可分 左面这张图也是线性不可分 但是 有一个圆形区域很好的进行了分类
这时候就可以映射到高维,见下例

面 到 体 :
映射高维
线 到 面 :
1-2维 这个例子就比较好理解了,主要是怎么映射? 见下内容….

2.2 支持向量

支持向量

支持向量在SVM中很重要,名字就看得出来, 在上例中红线为分割超平面,红色的*点就是支持向量点,即离分割超平面最近的点。

3. SVM理解

在二分类问题中,SVM需要的就是寻得一个分割超平面,使margin最大化,见下图,margin就是切割超平面离最近点的距离margin margin
最近的点就是支持向量点,这里的超平面可以定义为 w^X+b=0
假设2维特征向量X=(x1,x2) , 把b想象虚拟的w0 ,
那么超平面方程就变成了 : w0+w1x1+w2x2=0
右上方点满足 : w0+w1x1+w2x2>0
同理,左下点满足 : w0+w1x1+w2x2<0
经过对weight参数的调整,使得
H1:w0+w1x1+w2x2>=1 for y = +1
H2:w0+w1x1+w2x2<=1 for y = - 1 (用y的+1代表一类,-1代表另一类)
综上两式
yi(w0+w1x1+w2x2)>=1,i

那么如果线行不可分呢,那就需要映射到高维,例如X=(x1,x2,x3) 那么映射到6维Z函数就可以是 θ1(x)=x1,θ2(x)=x2,θ3(x)=x3θ4(x)=x21,θ5(x)=x1x2,θ6(x)=x1x3,取而代之的方程变为Y=w1z1+w2z2+...+w6z6 那么怎么映射呢,(回答:用到的是内积)内积很耗时,所以使用核函数来计算这个内积,使得高维化时间变短,主要的核函数有

  • linear : 线性核函数(linear kernel)
  • poly : 多项式核函数(ploynomial kernel)
  • rbf : 径向机核函数(radical basis function)
  • sigmoid : 神经元的非线性作用函数核函数(Sigmoid tanh)

具体介绍还是看看文档吧…..

然后根据核函数就可以进行分类或者回归了…..

4. SVM优缺点

优点
- 支持向量决定时间复杂,而不是取决于数据集的大小
- 结果易于理解
缺点
- 对于参数以及核函数有依赖,原始算法不加修改只用于二分类
- 算法实现比较困难 (依赖sklearn库的话就算了,打脸)

5. sklearn库简单应用实例

# coding:utf-8

from sklearn import svm
from numpy import *
import pylab as pl

# 加载数据集
def loadData(fileName):
    dataMat = []
    labelMat = []
    with open(fileName) as txtFile:
        for line in txtFile.readlines():
            dataMat.append(map(float, line.split())[0:-1])
            labelMat.append(map(float, line.split())[-1])
    return dataMat, labelMat

#
if __name__ == '__main__':
    x, y = loadData("train.txt")
    X, Y = loadData("test.txt")

    #'使用线性方法分类'
    clf = svm.SVR(kernel='linear')  
    clf.fit(x, y)
    res = clf.predict(X)
    print "kernel is linear", corrcoef(Y, res, rowvar=0)[0, 1]

    #'使用径向机方法分类'
    clf = svm.SVR(kernel='rbf')   
    clf.fit(x, y)
    res = clf.predict(X)
    print "kernel is rbf", corrcoef(Y, res, rowvar=0)[0, 1]

    #'使用线性最小二乘法进行分类'
    x = mat(x)
    X = mat(X)
    y = mat(y).T
    Y = mat(Y).T
    temp = x.T * x
    ws = temp.I * (x.T * y)
    yPre = X * ws
    print "linear", corrcoef(yPre, Y, rowvar=0)[0, 1]

    ''' SVR 支持向量回归 '''
    # w^T * x + bias
    # weight is .coef_
    # bias   is .intercept_

    random.seed(0)
    x = r_[random.randn(20, 2) - [2, 2], random.randn(20, 2) + [2, 2]]
    y = [0] * 20 + [1] * 20
    clf = svm.SVC(kernel='linear')
    clf.fit(x, y)
    w = clf.coef_[0]
    # print "coef",clf.coef_
    a = -w[0] / w[1]
    xx = arange(-4, 4)
    yy = a * xx - (clf.intercept_[0]) / w[1]  # intercept_ bias
    # print "bias",clf.intercept_
    b = clf.support_vectors_[0]
    yy1 = a * xx + (b[1] - a * b[0])
    b = clf.support_vectors_[-1]
    yy2 = a * xx + (b[1] - a * b[0])
    pl.plot(xx, yy, 'k-', color='red')
    pl.plot(xx, yy1, 'k--', color='green')
    pl.plot(xx, yy2, 'k--', color='green')
    pl.plot(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], '*', color='red')
    # print clf.support_vectors_
    pl.scatter(x[:, 0], x[:, 1], marker='.', s=60)
    pl.show()

6. 图像结果 以及 分析

# kernel is linear 0.989824485227
# kernel is rbf 0.990336373871
# linear 0.989824485227
'对比发现,简单调用中rbf函数分类效果最好,内核函数linear就是利用了最小二乘法'

结果
红色为支持向量,红线为切割超平面,绿色虚线为边际超平面,用来’阻挡’两类的超平面

附 数据集

点击这里

版权声明:有错误麻烦赐教,感激不尽~~~(转载留言哦~)

python机器学习库scikit-learn简明教程之:SVM支持向量机

1.获得样例数据 scikit-learn库有一些标准的数据集,例如分类的数字集,波士顿房价回归数据集。 在下面,我们启动Python解释器,然后载入数据集。我们可以认为,美元符号后输入pyt...
  • hanss2
  • hanss2
  • 2016年12月02日 19:45
  • 3445

sklearn中支持向量机部分

写在开头:英文原文http://scikit-learn.org/stable/modules/svm.html。 只是对原文做了简单的翻译,主要自己学习,能给大家提供帮助就再好不过了。 ****...
  • Good_Boyzq
  • Good_Boyzq
  • 2017年01月02日 21:59
  • 2171

简单理解支持向量机SVM的方法

一.简介         SVM主要针对小样本数据进行学习、分类和预测(有时也叫回归)的一种方法,能解决神经网络不能解决的过学习问题,而且有很好的泛化能力。SVM是一种有监督的学习模型,在处理二分类问...
  • abc362124883
  • abc362124883
  • 2015年05月25日 13:22
  • 3287

【Python-ML】SKlearn库支持向量机(SVM) 使用

# -*- coding: utf-8 -*- ''' Created on 2018年1月15日 @author: Jason.F @summary: Scikit-Learn库支持向量机分类算法 ...
  • fjssharpsword
  • fjssharpsword
  • 2018年01月15日 15:03
  • 34

【机器学习】支持向量机SVM - 对SVM与核函数的理解及sklearn参数详解

支持向量机是在深度学习流行开来之前,性能表现最好的一种机器学习方法。在看这篇blog之前,默认读者已经有了对支持向量机的基本概念的认识。 一、支持向量机的进一步理解 支持向量机的优化目标在...
  • dongrixinyu
  • dongrixinyu
  • 2018年01月11日 22:28
  • 23

机器学习教程 四.SVM(支持向量机)算法理解和应用

这篇博客我本来想花大力气来写的,写到一半时发现有人已经做了充足的工作,而且写的很完美,此处膜一下July的这篇《支持向量机通俗导论(理解SVM的三层境界)》本着不重复造轮子的思想(其实我写了不一定有他...
  • TalentDai
  • TalentDai
  • 2018年01月04日 10:25
  • 40

支持向量机(SVM)在机器视觉中的应用

  • 2017年11月26日 16:46
  • 3KB
  • 下载

SVM-支持向量机基本原理及应用

  • 2017年06月05日 11:32
  • 1003KB
  • 下载

机器学习应用——sklearn自带数据集训练(支持向量机分类)

总地址:git hub :machine-learning-python 源地址:分類法/範例一: Recognizing hand-written digits1.代码#!/usr/bin/en...
  • ml_1019
  • ml_1019
  • 2017年10月20日 19:59
  • 118

SVM支持向量机的农业领域叶片病斑识别的应用

  • 2014年07月10日 12:00
  • 3.24MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:支持向量机(SVM)理解以及在sklearn库中的简单应用
举报原因:
原因补充:

(最多只允许输入30个字)