ACM学习总结

ACM学习总结

这学期的acm学习到现在已经临近结束,现在回想确实学到了不少的东西,其中的一些思想不仅仅对解题有用,而且对于我们的生活也用很大的借助作用。

第一讲是讲述的贪心算法。在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。从贪心算法的定义可以看出,贪心算法不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一。

1 活动安排问题:设有n个活动的集合E={1,2,…,n},其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。

每个活动i都有一个要求使用该资源的起始时间si和一个结束时间fi,且si<fi。如果选择了活动i,则它在半开时间区间[si ,fi )内占用资源。若区间[si ,fi )与区间[sj,fj )不相交,则称活动i与活动j是相容的。当 si ≥ fj 或 sj ≥ fi 时,活动i与活动j相容。

活动安排问题就是在所给的活动集合中选出最大的相容活动子集合。

2 贪心算法的理论基础:贪心算法是一种在每一步选择中都采取在当前状态下最好或最优的选择,希望得到结果是最好或最优的算法。

贪心算法是一种能够得到某种度量意义下的最优解的分级处理方法,通过一系列的选择得到一个问题的解,而它所做的每一次选择都是当前状态下某种意义的最好选择。即希望通过问题的局部最优解求出整个问题的最优解。

这种策略是一种很简洁的方法,对许多问题它能产生整体最优解,但不能保证总是有效,因为它不是对所有问题都能得到整体最优解。

利用贪心策略解题,需要解决两个问题:

(1)该题是否适合于用贪心策略求解;

(2)如何选择贪心标准,以得到问题的最优/较优解。

贪心算法的求解过程:使用贪心算法求解问题应该考虑如下几个方面:

(1)候选集合A:为了构造问题的解决方案,有一个候选集合A作为问题的可能解,即问题的最终解均取自于候选集合A。

(2)解集合S:随着贪心选择的进行,解集合S不断扩展,直到构成满足问题的完整解。

(3)解决函数solution:检查解集合S是否构成问题的完整解。

(4)选择函数select:即贪心策略,这是贪心法的关键,它指出哪个候选对象最有希望构成问题的解,选择函数通常和目标函数有关。

(5)可行函数feasible:检查解集合中加入一个候选对象是否可行,即解集合扩展后是否满足约束条件。

3 背包问题:有3种方法来选取物品:

(1)当作0—1背包问题,用动态规划算法,获得最优值220;

(2)当作0—1背包问题,用贪心算法,按性价比从高到底顺序选取物品,获得最优值160。由于物品不可分割,剩下的空间白白浪费。

(3)当作背包问题,用贪心算法,按性价比从高到底的顺序选取物品,获得最优值240。由于物品可以分割,剩下的空间装入物品3的一部分,而获得了更好的性能。第二讲是讲述的搜索算法。搜索算法是利用计算机的高性能来有目的地穷举一个问题的部分或所有的可能情况,从而求出问题的解的一种方法。相比于单纯的枚举算法有了一定的方向性和目标性。算法是在解的空间里,从一个状态转移(按照要求拓展)到其他状态,这样进行下去,将解的空间中的状态遍历,找到答案(目标的状态)。

广度优先搜索(BFS):基本思想:从初始状态S 开始,利用规则,生成所有可能的状态。构成的下一层节点,检查是否出现目标状态G,若未出现,就对该层所有状态节点,分别顺序利用规则。生成再下一层的所有状态节点,对这一层的所有状态节点检查是否出现G,若未出现,继续按上面思想生成再下一层的所有状态节点,这样一层一层往下展开。直到出现目标状态为止。

深度优先搜索(DFS):基本思想:从初始状态,利用规则生成搜索树下一层任一个结点,检查是否出现目标状态,若未出现,以此状态利用规则生成再下一层任一个结点,再检查,重复过程一直到叶节点(即不能再生成新状态节点),当它仍不是目标状态时,回溯到上一层结果,取另一可能扩展搜索的分支。采用相同办法一直进行下去,直到找到目标状态为止。

二分查找算法:简单定义:在一个单调有序的集合中查找元素,每次将集合分为左右两部分,判断解在哪个部分中并调整集合上下界,重复直到找到目标元素。时间复杂度:O (logn),优于直接顺序查找O(n)。对于某些问题,如果答案具有特定的范围,并且验证答案是否成立的函数具有单调性。则可以在范围内对答案进行二分验证,从而快速确定答案。二分的思想在很多领域中都得到了广泛的应用,是很多算法的基础。相信不难理解整个二分查找的框架和用法。当需要求某凸性或凹形函数的极值,通过函数本身表达式并不容易求解时,就可以用三分法不断逼近求解。对于求解一些实际问题,当公式难以推导出来时,二分、三分法可以较为精确地求解出一些临界值,且效率也是令人满意的。灵活应用这些方法对解题会很有帮助。

二分法作为分治中最常见的方法,适用于单调函数,逼近求解某点的值。但当函数是凸性函数时,二分法就无法适用,这时三分法就可以“大显身手”

做了两周的搜索专题,感觉收获颇大。首先就是知道了主要的知识点或者说是搜索方法,严格来说,其实就是深搜和广搜,当然也夹杂着二分查找与三分算法,当然偶尔也遇到了回溯算法。

   BFS用的是队列,DFS用的是递归。递归之前写程序的时候偶尔会用用,所以深搜学起来用起来很快,但是队列以前没学过,最近看了看书了解了下但是写程序以前没用过,所以用起来还不是很随意。我个人感觉深搜与广搜的本质不同就是深搜下一次扩展的是本次扩展出来的子节点中的一个,而广搜扩展的则是本次扩展的节点的兄弟节点。所以也就导致最终采用了不同的数据结构。

    广搜是求解最优解的一种较好的方法,而深搜一般会用于只要求求解,并且解答树中的重复结点较多且重复较难判断时使用。

    当然,还有双向广搜。单向广搜虽然可以得到最优解,但是空间消耗增长快,如用广搜,则在理论上可以减少二分之一的搜索量,可有效提高搜索速度。

    最后,要用一句话来总结搜索的话就是:一切都是套路啊。我感觉搜索的题目思路找起来还可以,代码写起来结构都是相似的,很好写。当然了,正所谓:纸上得来终觉浅,绝知此事要躬行,要想真正的理解各种搜索的思想,还是要多做题啊。

第三讲讲的是动态规划:多阶段决策问题:如果一类问题的求解过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策,并影响到下一个阶段的决策。多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在预定的标准下达到最好的效果.

最优性原理:不论初始状态和第一步决策是什么,余下的决策相对于前一次决策所产生的新状态,构成一个最优决策序列。最优决策序列的子序列,一定是局部最优决策子序列。包含有非局部最优的决策子序列,一定不是最优决策序列。

用动态规划一般思路求解该题:如果用F[a][b]表示达到(a,b)这个点时所能吃到的最大金币数量。得到递推关系式:F[a][b]=max(F[a-1][b],F[a][b-1])+Coin[a][b](此步即为递归定义最优解的值,列出状态转移方程)F[m][n]即为所求。

动态规划的基本模型:动态规划问题具有以下基本特征:问题具有多阶段决策的特征。每一阶段都有相应的“状态”与之对应,描述状态的量称为“状态变量”。每一阶段都面临一个决策,选择不同的决策将会导致下一阶段不同的状态。每一阶段的最优解问题可以递归地归结为下一阶段各个可能状态的最优解问题,各子问题与原问题具有完全相同的结构。

动态规划的几个概念:阶段:据空间顺序或时间顺序对问题的求解划分阶段。状态:描述事物的性质,不同事物有不同的性质,因而用不同的状态来刻画。对问题的求解状态的描述是分阶段的。决策:根据题意要求,对每个阶段所做出的某种选择性操作。状态转移方程:用数学公式描述与阶段相关的状态间的演变规律。

动态规划问题的一般解题步骤:1、判断问题是否具有最优子结构性质,若不具备则不能用动态规划。2、把问题分成若干个子问题(分阶段)。3、建立状态转移方程(递推公式)。4、找出边界条件。5、将已知边界值带入方程。6、递推求解。

最长上升子序列-1:       一个数的序列bi,当b1 < b2 < ... < bS 的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列(ai1, ai2, ..., aiK),这里1 <= i1 < i2 < ... <iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).你的任务,就是对于给定的序列,求出最长上升子序列的长度。

动态规划实际上就是一种排除重复计算的算法,更具体的说,动态规划就是用空间换取时间。

可以用递归算法来解决:

int Max(int i,int j) //从当前位置开始的可得的最优值

{

  ints1,s2; //记录从左右斜线向下走的可达的最优值

  if(i>n) ||(j>i) return -1;//当前位置不存在,最优值为-1

 s1=Max(i+1,j)+triangle[i,j]; //沿左斜线向下走

 s2=Max(i+1,j+1)+triangle[i,j]; //沿右斜线向下走

  ifs1>s2 return s1

 else return s2;

}

   由以上算法不难算出其时间复杂度为2^n,而本题N最大为100,显然当N比较大时是无法在规定时间内出解的。

在求Max(2,1),Max(2,2)的时候两次调用函数Max(3,2),也就是说,函数Max(3,2)被重复计算了两次,有很多结点都被重复计算了多次,程序时效显然就会大打折扣了

   我们可以每求出一个函数的值便可将其用数组保存下来,到了下次要用的时候直接从数组里调出来用就可以了。这样时间复杂度一下子降成了O(N*N)。记忆化搜索!!!

最后动态规划可以简单地总结为:

动态规划算法通常用于求解具有某种最优性质的问题.在这类问题中,可能会有许多可行解.每一个解都对应于一个值,我们希望找到具有最优值的解

    动态规划的基本思想其实就是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。

    使用动态规划时的一般步骤为:

1、找出最优解的性质;

2、递归地定义最优值(写出动态规划方程);

3、以自底向上的方式计算出最优值;

4、根据计算最优值时得到的信息,构造一个最优解。

   对于最优化的问题,搜索可以说是万能的。所以动态规划可以解决的问题,搜索也一定可以解决。把一个动态规划算法改写成搜索是非常方便的,状态转移方程、规划方程以及边界条件都可以直接“移植”,所不同的只是求解顺序。动态规划是自底向上的递推求解,而深度搜索则是自顶向下的递归求解。

    对比之前所学的几种算法可以知道:若每个阶段只有一个状态->递推;若每个阶段的最优状态都是由上一个阶段的最优状态得到的->贪心;若每个阶段的最优状态是由之前所有阶段的状态的组合得到的->搜索;若每个阶段的最优状态可以从之前某个阶段的某个或某些状态直接得到而不管之前这个状态是如何得到的->动态规划。

第四讲讲的是图算法。图 (Graph) 是一种复杂的非线性数据结构,由顶点集合及顶点间的关系(也称弧或边)集合组成。可以表示为:G=(V, {VR})其中 V 是顶点的有穷非空集合; VR 是顶点之间关系的有穷集合,也叫做弧或边集合。弧是顶点的有序对边是顶点的无序对。

图的存储结构之数组表示法(邻接矩阵表示法):对于一个具有n个顶点的图,可用两个数组存储。其中一个一维数组存储数据元素(顶点)的信息,另一个二维数组(图的邻接矩阵)存储数据元素之间的关系(边或弧)信息。

图的存储方式—邻接矩阵:邻接矩阵使用场合数据规模不大n <= 1000,m越大越好稠密图最好用邻接矩阵;图中不能有多重边出现

图的存储方式—邻接表:邻接表使用场合顶点数很多n>1000,边数却不多。采用邻接表存储后,很多算法的复杂度也都是跟边数有关。通性的问题很多情况边数不多,多采用邻接表存储方式

避免最坏情况:方法:将深度小的树合并到深度大的树实现:假设两棵树的深度分别为h1和h2, 则合并后的树的高度h是:max(h1,h2), if h1<>h2.h1+1, if h1=h2.效果:任意顺序的合并操作以后,包含k个节点的树的最大高度不超过

进一步优化——路径压缩:思想:每次查找的时候,如果路径较长,则修改信息,以便下次查找的时候速度更快;步骤:第一步,找到根结点,第二步,修改查找路径上的所有节点,将它们都指向根结点

最小生成树问题:最小生成树:所有生成树中权值最小的一个边集T为最小生成树,确定树T的问题成为最小生成树问题

prim算法的基本思想:任取一个顶点加入生成树;在那些一个端点在生成树里,另一个端点不在生成树里的边中,取权最小的边,将它和另一个端点加进生成树。重复上一步骤,直到所有的顶点都进入了生成树为止。

kruskal算法的基本思想:对所有边从小到大排序;依次试探将边和它的端点加入生成树,如果加入此边后不产生圈,则将边和它的端点加入生成树;否则,将它删去;直到生成树中有了n-1条边,即告终止。算法的时间复杂度O(eloge)

最短路问题:单源最短路径;bellman-ford算法;spfa算法;dijkstra算;每对顶点的最短路径;floyd-washall算法

 

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值