K-均值聚类

原创 2015年03月26日 13:56:06

  刚刚写了篇分级聚类的,趁着余热,再写一下关于k-均值聚类的。

  为了突出k-均值聚类的特点,先黑一下分级聚类。跟k-均值聚类比起来,分级聚类算法有一下缺点:第一,的那个没有额外投入的时候,树形试图是不会真正将数据拆分成不同组的。第二,分级聚类的计算算法计算量相当大。当两个节点合并之后,节点之间的距离需要重新计算,当数据量较大时,计算量急速上升,不利于聚类分析。

  接着,开始介绍k-均值聚类。k-均值聚类算法开始时,先随即生成k个中心位置,然后根据一下算法执行:

    1,计算各个节点到各个中心点的距离

    2,对于每个节点,找到与之最近的中心点,将其归为该类。

     3,对步骤二划分好的的每一类中的节点取均值,作为新的中心点。

   4,重复执行第一步、第二步、第三步。

   多次迭代之后,聚类效果达到当前最佳。下面是图片演示:



相关文章推荐

机器学习实战之K-均值聚类

  • 2017年11月14日 09:32
  • 6KB
  • 下载

机器学习练习(七)—— K-均值聚类与主成分分析

作者:John Wittenauer 翻译:GreatX 源:Machine Learning Exercises In Python, Part 7这篇文章是一系列 Andrew Ng 在 Co...
  • And_w
  • And_w
  • 2017年02月13日 15:38
  • 893

通过主成分分析的K -均值聚类

  • 2010年04月15日 09:44
  • 230KB
  • 下载

k均值聚类(K-means)(转载)

4.1、摘要       在前面的文章中,介绍了三种常见的分类算法。分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到...

k-means(k均值聚类)算法介绍及实现(c++)

基本介绍: k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的...
  • cai0538
  • cai0538
  • 2011年12月11日 21:49
  • 27727

机器学习--k均值聚类(k-means)算法

一、基本原理     分类是指分类器根据已标注类别的训练集,通过训练可以对未知类别的样本进行分类。分类被称为监督学习。如果训练集的样本没有标注类别,那么就需要用到聚类。聚类是把相似的样本聚成一类,这...

机器学习算法与Python实践之(五)k均值聚类(k-means)

机器学习算法与Python实践之(五)k均值聚类(k-means)zouxy09@qq.comhttp://blog.csdn.net/zouxy09        机器学习算法与Python实践这个...
  • zouxy09
  • zouxy09
  • 2013年12月26日 19:10
  • 102436

机器学习算法与Python实践之 k均值聚类(k-means)

文章来源:http://blog.csdn.net/zouxy09/article/details/17589329                   机器学习算法与Python实践这个...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:K-均值聚类
举报原因:
原因补充:

(最多只允许输入30个字)