推荐系统的简单分类

原创 2015年12月20日 14:40:55

为了能够更好的区分推荐系统的类型, 本文根据先人的分类方法, 将推荐系统分为以下几类:

1. 基于内容

系统为用户推荐与他们过去的兴趣类似的物品. 物品间的相似性是基于被比较的特征来计算的. 例如, 某个用户对一部喜剧电影有了正面的评价, 那么系统就能学会从喜剧类型中为该用户推荐电影.

协同过滤

这种方法是找到与用户有相同品味的用户, 然后将相似的用户过去喜欢的物品推荐给用户.两用户间的相似偏好是通过计算用户历史评分记录相似得到的. 协同过滤被认为是推荐系统中最流行和最广泛实现的技术

基于人口统计学

这种类型的推荐系统推荐五平时是基于人口统计信息的. 我们假设不同的人群信息应该产生不同的推荐. 许多网站采用基于人口统计的简单而有效的个性化解决方案. 例如, 根据用户的语言或者国籍, 划分到特定的网站, 或者根据用户的年龄制定推荐. 虽然这种方法在营销的文件中相当流行, 但是推荐系统方面对此一直很少研究.

基于知识

基于知识的系统根据特定的领域只是推荐物品, 这些只是是关于如何确定五平的那些特性能够满足用户需要和偏好, 以及最终如何确定物品对用户有用.

基于社区

这种推荐方法以来用户朋友的偏好. 这种技术有个业界流行的标书”告诉我你的朋友是谁, 我将知道你是谁”. 这个现象的出现, 加上日益普及的社会网络, 于是基于社区的推荐系统就应运而生, 并且得到人们越来越多的关注. 这种系统通常叫做社会化推荐系统. 这种推荐系统推荐或i去用户的社会关系和用户朋友的偏好等信息并以此进行建模. 推荐结果基于用户朋友提供的评分. 实际上, 这类推荐系统是随着社交网络产生的, 可以简单又全面的采集与用户社交关系相关的数据

混合推荐系统

这类推荐系统综合了上面提供的技术. 混合推荐就是综合A和B方法, 利用A的优势弥补B的不足. 例如, 协同过滤方法遭遇的新物品冷启动问题, 也就是不能推荐尚未被评分的五平. 基于内容的方法没有这个限制, 应为新物品的预测是基于物品描述, 而这些特征都是容易获得的. 给出两个基本的推荐技术, 采用一些方法将这些技术综合起来产生一个混合的系统.

相关文章推荐

[推荐系统]分类

参照xlvector的博士论文,分类方式有二 1.基于数据的分类 2.基于模型的分类 目前商业上使用较广泛的,是基于数据的分类的一些算法,主要包括: 1.协同过滤 仅仅利用用户的行为...

推荐系统_基于内容的推荐

基于内容的推荐 基于标签的推荐 隐语义模型

推荐系统论文分类推荐

1、研究twitter的paper      http://reculike.com/site/search.PHP?query=twitter 2、研究facebook的paper      ...

推荐系统概述

一推荐系统的发展 二主要方法 2.1 协同过滤推荐算法 2.1.1基于记忆的协同过滤 2.1.2基于模型的协同过滤 2.2 基于内容的推荐算法 ...

最简单的推荐系统实践

参考网络上的部分资料,做了个最简单的推荐系统的demo实例。 我们将使用MovieLens数据集,它是在实现和测试推荐引擎时所使用的最常见的数据集之一,包含来自943个用户以及精选的1682部电影的...

一个简单的推荐系统

咱以电影电视的推荐系统为例,一步一步的来实现一个简单的推荐系统吧, 由于比较简单,整个推荐系统源码不到100行,大概70-80行吧,应该很容易掌握。 为了快速开发原型,咱采用Python代码来演示 1...

用户兴趣模型分类以及推荐系统技术调研

用户兴趣模型分类 根据用户之前在相关网站的行为数据记录分析出用户的兴趣和偏好,然后根据不同用户兴趣和偏好不同为其推荐不同的内容,这种新的信息获取方式被称为个性化推荐技术。 个性化新闻推荐系统中常用的...

新闻推荐系统之朴素贝叶斯分类器文本分类

因为最近需要为自己团队的项目开发新闻推荐的功能模块,在推荐算法这一块涉及到了基于内容的推荐算法(Content-Based Recommendation),因此用到了朴素贝叶斯来对抓取的新闻进行分类,...

分类、推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) /(F-score)

对一些分类、推荐系统的评测指标如准确率(Precision)、召回率(Recall)和综合指标(F-measure)作了说明。...

Hadoop好友推荐系统-执行分类算法

一、前端展示 1、jsp页面 table> tr> td>label for="name">输入路径:lab...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:推荐系统的简单分类
举报原因:
原因补充:

(最多只允许输入30个字)