关闭

K-均值聚类

刚刚写了篇分级聚类的,趁着余热,再写一下关于k-均值聚类的。   为了突出k-均值聚类的特点,先黑一下分级聚类。跟k-均值聚类比起来,分级聚类算法有一下缺点:第一,的那个没有额外投入的时候,树形试图是不会真正将数据拆分成不同组的。第二,分级聚类的计算算法计算量相当大。当两个节点合并之后,节点之间的距离需要重新计算,当数据量较大时,计算量急速上升,不利于聚类分析。   接着,开始介绍k-均值聚类...
阅读(1105) 评论(0)

初识分级聚类算法

首先介绍一下聚类算法。先来一段维基百科上扒下来的介绍:聚类分析(英语:Cluster analysis,亦称为群集分析)是对于统计数据分析的一门技术,在许多领域受到广泛应用,包括机器学习,数据挖掘,模式识别,图像分析以及生物信息。聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等...
阅读(1219) 评论(0)
    个人资料
    • 访问:169530次
    • 积分:2876
    • 等级:
    • 排名:第12841名
    • 原创:124篇
    • 转载:4篇
    • 译文:0篇
    • 评论:0条
    文章分类