codeforces788E New task -- 线段树

Li 表示点 i 左边不大于ai的数的个数, Ri 表示点 i 右边不大于ai的数的个数。
先考虑没有修改的情况。将 ai 相等的点一起考虑,令 si 表示 aj 等于 i j的个数, lsumi 表示 ij=1Lj rsumi 表示 sajj=i+1Rj 。枚举中间的点 k ,对答案的贡献就是lsumk1rsumk+1。可以用线段树维护区间 Li Ri 的和。
然后考虑删除一个点:

  • 当它作为 k 时:ans=lsumk1rsumk+1
  • 当它作为 j 时:ans=Ljsaji=j+2rsumi
  • 当它作为 l 时:ans=Rll2i=1lsumi

那么怎么求 saji=j+2rsumi 呢?
注意到 rj+2 的贡献是 1 rj+3的贡献是 2rsj 的贡献是 sjj1 ,那么用线段树维护 iri 就可以了。 lsum 同理。
注意因为有删除操作,点 i 的右边第2个数不一定是 i+2 ,要在线段树上二分求。
加入一个点与删除类似。
时间复杂度 O(nlogn)

代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
inline char nc(){
    static char buf[100000],*p1=buf,*p2=buf;
    if(p1==p2){
        p2=(p1=buf)+fread(buf,1,100000,stdin);
        if(p1==p2)return EOF;
    }
    return *p1++;
}
inline void Read(int& x){
    char c=nc();
    for(;c<'0'||c>'9';c=nc());
    for(x=0;c>='0'&&c<='9';x=(x<<3)+(x<<1)+c-48,c=nc());
}
int Len;
char ss[30];
inline void Print(int x){
    if(!x){
        putchar(48);putchar('\n');
        return;
    }
    for(Len=0;x;x/=10)ss[++Len]=x%10;
    while(Len)putchar(ss[Len--]+48);putchar('\n');
}
#define N 100010
#define M 1000000007
struct Node{
    int l,r,w[5],p[2];
}c[N<<2];
struct Disc{
    int w,f;
}d[N];
vector<int>g[N];
int i,j,k,n,m,a[N],s1[N],s2[N],b[N],Num,Rt[N],f[N],s[N],Ans,Q,x,y,S,t;
inline bool Cmp(Disc a,Disc b){
    return a.w<b.w;
}
inline void Update1(int x){
    for(;x<=m;x+=x&-x)b[x]++;
}
inline int Query1(int x){
    int Ans=0;
    for(;x;x-=x&-x)Ans+=b[x];
    return Ans;
}
inline void Update_sum(int x,int y,int d){
    c[x].w[d+2]=(c[x].w[d+2]+1ll*y*c[x].w[d]%M)%M;
    c[x].p[d]+=y;
}
inline void Up(int x){
    for(int i=0;i<5;i++)
    c[x].w[i]=(c[c[x].l].w[i]+c[c[x].r].w[i])%M;
}
inline void Down(int x){
    for(int i=1;i>=0;i--)
    if(c[x].p[i]){
        Update_sum(c[x].l,c[x].p[i],i);
        Update_sum(c[x].r,c[x].p[i],i);
        c[x].p[i]=0;
    }
}
inline int Query(int x,int l,int r,int L,int R,int d){
    if(l>=L&&r<=R)return c[x].w[d];
    Down(x);
    int Mid=l+r>>1;
    if(Mid<L)return Query(c[x].r,Mid+1,r,L,R,d);
    if(Mid>=R)return Query(c[x].l,l,Mid,L,R,d);
    return (Query(c[x].l,l,Mid,L,R,d)+Query(c[x].r,Mid+1,r,L,R,d))%M;
}
inline void Build(int& x,int l,int r,int y){
    x=++Num;
    if(l==r){
        int a=s1[g[y][l-1]],b=s2[g[y][l-1]];
        c[x].w[0]=a;
        c[x].w[1]=b;
        c[x].w[2]=1ll*a*(s[y]-l+1)%M;
        c[x].w[3]=1ll*b*l%M;
        c[x].w[4]=1;
        return;
    }
    int Mid=l+r>>1;
    Build(c[x].l,l,Mid,y);Build(c[x].r,Mid+1,r,y);
    Up(x);
}
inline void Update1(int x,int l,int r,int p,int y,int d){
    if(l==r){
        if(d==1){
            int a=s1[g[y][l-1]],b=s2[g[y][l-1]];
            c[x].w[0]=a;
            c[x].w[1]=b;
            if(l<s[y])c[x].w[2]=1ll*a*(Query(Rt[y],1,s[y],l+1,s[y],4)+1)%M;else c[x].w[3]=a;
            if(l>1)c[x].w[3]=1ll*b*(Query(Rt[y],1,s[y],1,l-1,4)+1)%M;else c[x].w[3]=b;
            c[x].w[4]=1;
        }else memset(c[x].w,0,sizeof(c[x].w));
        return;
    }
    Down(x);
    int Mid=l+r>>1;
    if(p<=Mid)Update1(c[x].l,l,Mid,p,y,d);else Update1(c[x].r,Mid+1,r,p,y,d);
    Up(x);
}
inline void Update(int x,int l,int r,int L,int R,int d,bool t){
    if(l>=L&&r<=R){
        Update_sum(x,d,t);
        return;
    }
    Down(x);
    int Mid=l+r>>1;
    if(Mid>=L)Update(c[x].l,l,Mid,L,R,d,t);
    if(Mid<R)Update(c[x].r,Mid+1,r,L,R,d,t);
    Up(x);
}
inline void Find1(int x,int l,int r,int L,int R){
    if(S>=2)return;
    if(l==r){
        S+=c[x].w[4];
        if(S==2)t=l;
        return;
    }
    Down(x);
    if(l>=L&&r<=R){
        int Mid=l+r>>1;
        if(S+c[c[x].l].w[4]>=2)Find1(c[x].l,l,Mid,L,R);else
        if(S+c[x].w[4]>=2)S+=c[c[x].l].w[4],Find1(c[x].r,Mid+1,r,L,R);else S+=c[x].w[4];
        return;
    }
    int Mid=l+r>>1;
    if(Mid>=L)Find1(c[x].l,l,Mid,L,R);
    if(Mid<R)Find1(c[x].r,Mid+1,r,L,R);
}
inline void Find2(int x,int l,int r,int L,int R){
    if(S>=2)return;
    if(l==r){
        S+=c[x].w[4];
        if(S==2)t=l;
        return;
    }
    Down(x);
    if(l>=L&&r<=R){
        int Mid=l+r>>1;
        if(S+c[c[x].r].w[4]>=2)Find2(c[x].r,Mid+1,r,L,R);else
        if(S+c[x].w[4]>=2)S+=c[c[x].r].w[4],Find2(c[x].l,l,Mid,L,R);else S+=c[x].w[4];
        return;
    }
    int Mid=l+r>>1;
    if(Mid<R)Find2(c[x].r,Mid+1,r,L,R);
    if(Mid>=L)Find2(c[x].l,l,Mid,L,R);
}
inline void Update_seq(int x,int d){
    if(f[x]>1&&f[x]<s[a[x]])Ans=(Ans+1ll*d*Query(Rt[a[x]],1,s[a[x]],1,f[x]-1,0)*Query(Rt[a[x]],1,s[a[x]],f[x]+1,s[a[x]],1)%M)%M;
    if(f[x]<s[a[x]]){
        S=t=0;  
        Find1(Rt[a[x]],1,s[a[x]],f[x]+1,s[a[x]]);
        if(t)Ans=(Ans+1ll*d*s1[x]*(Query(Rt[a[x]],1,s[a[x]],t,s[a[x]],3)-1ll*Query(Rt[a[x]],1,s[a[x]],1,t-1,4)*Query(Rt[a[x]],1,s[a[x]],t,s[a[x]],1)%M)%M)%M;
        Update(Rt[a[x]],1,s[a[x]],f[x]+1,s[a[x]],d,1);
    }
    if(f[x]>1){
        S=t=0;
        Find2(Rt[a[x]],1,s[a[x]],1,f[x]-1);
        if(t)Ans=(Ans+1ll*d*s2[x]*(Query(Rt[a[x]],1,s[a[x]],1,t,2)-1ll*Query(Rt[a[x]],1,s[a[x]],t+1,s[a[x]],4)*Query(Rt[a[x]],1,s[a[x]],1,t,0)%M)%M)%M;
        Update(Rt[a[x]],1,s[a[x]],1,f[x]-1,d,0);
    }
    Update1(Rt[a[x]],1,s[a[x]],f[x],a[x],d);
}
int main(){
    Read(n);
    for(i=1;i<=n;i++)Read(d[i].w),d[i].f=i;
    sort(d+1,d+n+1,Cmp);
    a[d[1].f]=m=1;
    for(i=2;i<=n;i++)
    if(d[i].w==d[i-1].w)a[d[i].f]=m;else a[d[i].f]=++m;
    for(i=1;i<=n;i++){
        g[a[i]].push_back(i);
        f[i]=g[a[i]].size();
        s1[i]=Query1(a[i]);
        Update1(a[i]);
    }
    memset(b,0,sizeof(b));
    for(i=n;i;i--){
        s2[i]=Query1(a[i]);
        Update1(a[i]);
    }
    for(i=1;i<=m;i++)s[i]=g[i].size(),Build(Rt[i],1,s[i],i);
    for(i=1;i<=n;i++)
    if(f[i]>1&&f[i]<s[a[i]])Ans=(Ans+1ll*Query(Rt[a[i]],1,s[a[i]],1,f[i]-1,0)*Query(Rt[a[i]],1,s[a[i]],f[i]+1,s[a[i]],1)%M)%M;
    Read(Q);
    while(Q--){
        Read(k);Read(x);
        Update_seq(x,k==1?-1:1);
        Print((Ans+M)%M);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值