高斯滤波、均值滤波、中值滤波、最小均方差滤波、Gabor滤波的优缺点是什么?

转载 2012年05月30日 11:53:38

转自:http://hi.baidu.com/littlequan1/blog/item/54ab101f46047b9887d6b6f9.html

高斯滤波

由于高斯函数的傅立叶变换仍是高斯函数, 因此高斯函数能构成一个在频域具有平滑性能的低通滤波器。可以通过在频域做乘积来实现高斯滤波。均值滤波是对是对信号进行局部平均, 以平均值来代表该像素点的灰度值。矩形滤波器(Averaging Box Filter)对这个二维矢量的每一个分量进行独立的平滑处理。通过计算和转化 ,得到一幅单位矢量图。这个 512×512的矢量图被划分成一个 8×8的小区域 ,再在每一个小区域中 ,统计这个区域内的主要方向 ,亦即将对该区域内点方向数进行统计,最多的方向作为区域的主方向。于是就得到了一个新的64×64的矢量图。这个新的矢量图还可以采用一个 3×3模板进行进一步的平滑。

均值滤波
把每个像素都用周围的8个像素来做均值操作。可以平滑图像,速度快,算法简单。但是无法去掉噪声,这能微弱的减弱它。

中值滤波
常用的非线性滤波方法 ,也是图像处理技术中最常用的预处理技术。它在平滑脉冲噪声方面非常有效,同时它可以保护图像尖锐的边缘。加权中值滤波能够改进中值滤波的边缘信号保持效果。但对方向性很强的指纹图像进行滤波处理时 ,有必要引入方向信息,即利用指纹方向图来指导中值滤波的进行。

最小均方差滤波器
亦称维纳滤波器,其设计思想是使输入信号乘响应后的输出,与期望输出的均方误差为最小。

Gabor滤波
Gabor变换是英国物理学家 Gabor提出来的,由“测不准原理”可知,它具有最小的时频窗,即Gabor函数能做到具有最精确的时间-频率的局部化;另外, Gabor函数与哺乳动物的视觉感受野相当吻合,这一点对研究图像特征检测或空间频率滤波非常有用。恰当的选择其参数, Gabor变换可以出色地进行图像分割、识别与理解。如文献提出的基于Gabor滤波器的增强算法。

中值滤波

一、概述     数字图像的采样或传输在经过传感器或传输通道时经常受到噪声的干扰。为了便利进一步的图像操作,如:边缘检测、图像分割和模式识别等,有必要甚至是必须对受噪图像进行滤波。中值滤波是由Tuke...
  • tiemaxiaosu
  • tiemaxiaosu
  • 2016年06月23日 16:40
  • 6812

关于高斯滤波的一些理解

图像滤波常用算法           图像处理中,常用的滤波算法有均值滤波、中值滤波以及高斯滤波等。均值滤波使用模板内所有像素的平均值代替模板中心像素灰度值,这种方法易收到噪声的干扰,不能完全消除噪...
  • lz0499
  • lz0499
  • 2017年01月04日 07:44
  • 6687

改进的中值滤波算法

  • 2013年12月11日 15:01
  • 491KB
  • 下载

均值滤波vs中值滤波

均值滤波是一种线性平均滤波器,它通过求窗口内所有像素的平均值来得到中心像素点的像素值。这样的好处是可以有效的平滑图像,降低图像的尖锐程度,降低噪声。但缺点是不能消除噪声。中值滤波也是一种很常用的数字滤...
  • u013199483
  • u013199483
  • 2017年04月08日 10:13
  • 866

灰度最小方差的均值滤波器

此为灰度最小方差的均值滤波器:在去噪能力上弱于传统的均值、中值滤波,但在保留图像边缘和细节能力方面要强于前者。 子函数: %该种方法的基本思想是:先使用模板覆盖图像区域,若像素都属于一个区域,...
  • zhedahe
  • zhedahe
  • 2013年10月29日 20:02
  • 1262

最小均方差的概率阐述(Probabilistic interpretation)

由误差项服从高斯分布,写出似然函数,通过对数似然函数看出参数的极大似然估计与最小均方差同解。...
  • blackyuanc
  • blackyuanc
  • 2017年04月12日 19:57
  • 590

均值滤波和中值滤波去噪

  • 2017年12月17日 13:48
  • 12KB
  • 下载

图像的均值滤波、中值滤波_JAVA

转载自  http://blog.csdn.net/luoweifu/article/details/8150196 概述 噪声对图像处理的影响很大,它影响图像处理的输入、采集和处...
  • fangbinwei93
  • fangbinwei93
  • 2016年01月22日 15:49
  • 3405

基于最小均方差(维纳)滤波的图像去模糊

逆滤波容易受到噪声的影响。最小均方差滤波,该方法建立在图像和噪声都是随机变量的基础上,找出未污染图像ff的一个估计f^\hat{f},使他们之间的均方误差最小。e2=E{(f−f^)2} e^2=E\...
  • yuyangyg
  • yuyangyg
  • 2017年11月30日 20:19
  • 305

高斯滤波核的大小与sigma(标准差)之间的关系

  • xuelangwin
  • xuelangwin
  • 2016年12月12日 15:18
  • 3294
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:高斯滤波、均值滤波、中值滤波、最小均方差滤波、Gabor滤波的优缺点是什么?
举报原因:
原因补充:

(最多只允许输入30个字)