关闭

poj 3160 Father Christmas flymouse

123人阅读 评论(0) 收藏 举报
类型:有向图连通性 + spfa求最长路
题目:http://poj.org/problem?id=3160
来源:POJ Monthly--2006.12.31, Sempr

思路:强连通分量中的点可以相互到达,可以将其缩点,构造新有向无环图。如果要使结果最大,容易知道圣诞老人的起点是新图中节点入度为0的点。将新点的权赋值到对应的边上,则问题即是求从起点开始的最长路

!!!点权有负值

// poj 3160 Father Christmas flymouse
// wa wa wa ac 1364K 125MS
#include <iostream>
#include <fstream>
#include <algorithm>
#include <queue>
#include <stack>
#include <string>
#include <cmath>
#include <cstring>
using namespace std;

#define MIN(a,b) (a < b ? a : b)
#define clr(a,b) memset(a,b,sizeof(a))
#define FOR(i,a,b) for((i) = (a); (i) < (b); ++i)
#define FORE(i,a,b) for((i) = (a); (i) <= (b); ++i)
#define MAXN 30010
#define MAXM 300010

const int INF = 0x7f7f7f7f;

bool in_stack[MAXN];
bool vis[MAXN];
int num, cnt, scnt, end_sum, m, n, cnt_num;
int in[MAXN];
int cnt0[MAXN];
int dist[MAXN];
int endd[MAXN], val[MAXN];
int low[MAXN], step[MAXN];
int head[MAXN], shead[MAXN];
int belong[MAXN];
stack<int> st;
struct edge {
    int v, nxt;
}e[MAXM];
struct sedge {
    int v, nxt, w;
}p[MAXM];

void addedge(int u, int v) {
    e[cnt].v = v;
    e[cnt].nxt = head[u];
    head[u] = cnt++;
}

void addsedge(int u, int v) {
    p[scnt].v = v;
    p[scnt].w = endd[v];
    p[scnt].nxt = shead[u];
    shead[u] = scnt++;
}

void Tarjan(int u) {
    int v;
    int i,j;

    step[u] = low[u] = ++num;
    st.push(u);
    in_stack[u] = true;
    for(i = head[u]; i != -1; i = e[i].nxt) {
        v = e[i].v;
        if(!step[v]) {
            Tarjan(v);
            low[u] = MIN(low[u],low[v]);
        }
        else if(in_stack[v])
            low[u] = MIN(low[u],step[v]);
    }
    if(step[u] == low[u]) {
        cnt_num++;
        int tmp_sum = 0;
        do{
            j = st.top();
            st.pop();
            in_stack[j] = false;
            if(val[j] > 0)
                endd[cnt_num] += val[j];
            belong[j] = cnt_num;
        }while(j != u);
    }
}

int spfa(int x) {
    int i;

    clr(dist, 0);
    clr(cnt0, 0);
    clr(vis, false);
    dist[x] = endd[x];
    queue<int> q;
    q.push(x);
    vis[x] = true;
    ++cnt0[x];
    while(!q.empty()){
        int u = q.front();
        q.pop();
        vis[u] = false;
        for(i = shead[u]; i != -1; i = p[i].nxt){
            int v = p[i].v;
            if(p[i].w + dist[u] > dist[v]){
                dist[v] = p[i].w + dist[u];
                if(!vis[v]){
                    q.push(v);
                    vis[v] = true;
                    if((++cnt0[v]) >= cnt_num)
                        return -1;
                }
            }
        }
    }
    return 1;
}

void solve() {
    int i, j;

    FOR(i, 0, n)
        if(step[i] == 0)
            Tarjan(i);
    FOR(i, 0, n)
        for(j = head[i]; j != -1; j = e[j].nxt)
            if(belong[i] != belong[e[j].v]) {
                addsedge(belong[i], belong[e[j].v]);
                ++in[belong[e[j].v]];
            }
    FORE(i, 1, cnt_num)
        if(in[i] == 0) {
            spfa(i);
            int tmp_sum = -INF;
            FORE(j, 1, cnt_num)
                tmp_sum = max(tmp_sum, dist[j]);
            end_sum = max(end_sum, tmp_sum);
        }
    printf("%d\n", end_sum);
}

void init() {
    int i, u, v;

    clr(head, -1);
    clr(shead, -1);
    clr(step, 0);
    clr(in, 0);
    clr(belong, 0);
    clr(endd, 0);
    clr(in_stack, false);
    num = cnt = scnt = end_sum = cnt_num = 0;
    FOR(i, 0, n)
        scanf("%d", &val[i]);
    FOR(i, 0, m) {
        scanf("%d %d", &u, &v);
        addedge(u, v);
    }
}

int main() {

    while(scanf("%d %d", &n, &m) != EOF) {
        init();
        solve();
    }
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:53015次
    • 积分:1737
    • 等级:
    • 排名:千里之外
    • 原创:128篇
    • 转载:3篇
    • 译文:0篇
    • 评论:1条
    文章分类
    最新评论