关闭

hdoj 1028 Ignatius and the Princess III

142人阅读 评论(0) 收藏 举报
分类:

类型:DP

题目:http://acm.hdu.edu.cn/showproblem.php?pid=1028

思路:题目是求整数n的划分方案数。令状态

dp(p, n) = n的整数划分方案数其中规定最大的整数不大于p

有递推式:

dp(p, n) = (1) dp(n, n) n < p

                  (2) dp(p - 1, n) + dp(p, n - p) n >= p

枚举n的整数划分中最大整数是否是p

#include <iostream>
#include <string>
#include <queue>
#include <stack>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;

#define FOR(i,a,b) for(i = (a); i < (b); ++i)
#define FORE(i,a,b) for(i = (a); i <= (b); ++i)
#define FORD(i,a,b) for(i = (a); i > (b); --i)
#define FORDE(i,a,b) for(i = (a); i >= (b); --i)
#define CLR(a,b) memset(a,b,sizeof(a))
#define PB(x) push_back(x)

const int MAXN = 122;
const int MAXM = 0;
const int hash_size = 25000002;
const int INF = 0x7f7f7f7f;

int dp[MAXN][MAXN];

int main() {
    int i, j, n;
    while(cin>>n) {
        CLR(dp, 0);
        dp[0][0] = 1;
        FORE(i, 0, n)
            dp[1][i] = 1;
        FORE(i, 2, n)
            FORE(j, 0, n)
                if(j < i)
                    dp[i][j] = dp[i - 1][j];
                else
                    dp[i][j] = dp[i][j - i] + dp[i - 1][j];
        cout<<dp[n][n]<<endl;
    }
    return 0;
}



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:54296次
    • 积分:1744
    • 等级:
    • 排名:千里之外
    • 原创:128篇
    • 转载:3篇
    • 译文:0篇
    • 评论:1条
    文章分类
    最新评论