关闭

[置顶] 基础软件国产化闲谈

现代软件是高度国际化的,在互联网上,传播、发布易如反掌。我们普通人更不会不去关心这些东东都是哪个国家的。事实上,很多时候真的说不清楚,开源项目有各个国家的团队参与,那么,为什么还要再扯国产化这个蛋疼的话题呢?笔者认为,软件国产化讲的是“基础软件国产化”,基础软件是孕育大师的舞台,基础软件和开源社区紧密绑定,基础软件改善行业环境。...
阅读(1230) 评论(1)

[置顶] 穿越时空的纪念册

整理屋子,故纸堆中翻出了93年的电脑报合订本,偶有兴趣的翻看了一下,一不小心就荒废了一下午。跟随着编辑的脚步,脑海中记忆的门缓缓的开启了。       还记得SPDOS+WPS吗?我是95年在初中机房接触SPDOS 1.0 + WPS的,坐在长城单色显示器边,战战兢兢地输入“SPDOS”,"B:","WPS",“西山DOS”系统便启动了。当时特别喜欢GW-Basic, 却非常讨厌WPS-...
阅读(3945) 评论(12)

一种不太完善的OpenStreetMap字典汉化方法

根据世界地名词典,对OpenStreetMap进行汉化,使用了下面的代码。不太完善,这里仅贴出来。 地名字典在我的资源世界地名大词典下载。...
阅读(22) 评论(0)

机器学习小试(5)机器学习应用前的认识准备

近期,见缝插针地逐一学习、实践了吴大神的视频教程。从一开始对“机器学习”这个名词的敬畏,到现在的疑惑,算是稍微能够提出点自己的问题了,在准备应用机器学习解决实际问题之前,在认识方面,先想想,机器学习的概念有多宽?人脑认知与特征构造,也许是绕不过的坎儿!使用算法之前,要想的事情很多!...
阅读(264) 评论(0)

机器学习小试(4)当前教材中场休息

学习http://mooc.guokr.com/note/16274/这个视频教程已经一段时间了,监督学习部分基本上过完,一些疑问,一些思考,值得记下来。 上半部分主要介绍了监督学习的一些经典方法。回过头来看,这部分经典方法主要解决函数拟合和分类问题。在训练集已知确切结果的情况下,通过线性回归、逻辑回归、构造神经网络等手段,完成对测试集输入的拟合、分类。...
阅读(387) 评论(0)

机器学习小试(3)Tensorboard 可视化初步

上文里,我们做了一个网络,用于分类平面内的三类散点。这个网络的结构很清晰,但怎么可视化呢?根据教程中的指示,开始试试Tensorboard (TB). 由理论学习,知道了神经网络最重要的就是训练技术,也就是梯度的反向加权传导的推导。 由编程实践,发现TS竟然不用写偏导数计算这个步骤,于是思考为什么?由这篇博客,通过可视化验证了猜测:偏导数梯度计算,TS已经自动搞定啦!...
阅读(2133) 评论(0)

机器学习小试(2)使用多层神经网络进行分类实验

已经学到这篇教程的第十章啦!教程的数学背景清晰、讲述深浅适宜。动手实现一个分类器吧!借助TF,我们可以绕开烦恼的偏微分方程与矩阵权传递。此外,变步长下降算法能够很好的适应梯度变化。...
阅读(377) 评论(0)

机器学习小试(1)TensorFlow的第一个程序

最近,因为项目需要开始接触机器学习。虽然在学校对神经网络等算法已有接触,但早已忘得差不多了。在学习TF之前,建议和我一样,先从理论背景开始看起。...
阅读(231) 评论(2)

雕虫小技也重要--数据处理中的电子表格技巧

在数据处理过程中,常遇到一些很棘手的问题。如需要一次性的导入一批非格式化的数据、临时统计、筛选一些参数等工作,如果不写代码,觉得难以实现;写代码,又感到不值得。从多年的职场经验来看,这种鸡肋工作往往还是影响效率的关键点,一个人能力强不强,往往体现在能否灵活、高效地应对这些麻烦。下面,讲一讲目前公司中盛行的一些“雕虫小技”。...
阅读(394) 评论(0)

C++闭包,一样很简单

闭包是指可以包含自由(未绑定到特定对象)变量的代码块;这些变量不是在这个代码块内或者任何全局上下文中定义的,而是在定义代码块的环境中定义(局部变量)。C++11以后,借助functional和lambada表达式,可以轻松的实现闭包功能。...
阅读(744) 评论(0)

用C++Qt 与libfcgi快速开发后台 WebService

在与APP接口的后台WebService开发方面,估计很少有人直接使用C接口的libfcgi-dev进行开发的了。但是,这不代表此方法是不可行的。在强大的Qt库的支持下,原来使用C++开发webService也是非常方便的。这里我们以获取OpenStreetMap数据库中的地理信息为例子,看看现代C++的威力。 项目地址: https://code.csdn.net/goldenhawking/...
阅读(835) 评论(3)

使用1角分高程数据为OpenStreetMap服务器添加海洋等深线

在前文中,我们使用NASA SRTM 数据为陆地添加了3角秒的等高线图层。今天,我们继续为海洋添加等深线。海洋的等深线数据,开放标准的以 etopo1为著名。此数据的分辨率为1角分(arc-min),即 1/60 度。其dem图层为 WGS-84标准投影,在官方网站可以下载。我选择的是grid配准的binary类型数据。这个数据其实就是一个16位整形的矩阵...
阅读(645) 评论(0)

为OpenStreetMap瓦片服务器添加3弧秒全球DEM图层

在上一篇文章里,我们试着测试了局部3弧秒(即1/1200度)分辨率的 DEM等高线嵌入OSM图层的效果。下面,来分享一下批量导入全球的DEM数据。...
阅读(800) 评论(0)

使用Phyghtmap为OpenStreetMap添加 DEM 高程图层

玩OSM很久了,今天准备为自己的ArchOSM服务器添加NASA的SRTM图层。 - 第一步,获取DEM数据并转化为OSM使用的xml或PBF格式文件 - 第二步,为osm2pgsql指定style与数据库,导入PBF文件 - 第三步,嵌入DEM图层到Mapnik的样式表 - 第四步, 重新渲染瓦片 我们得到了详细的等高线地图!...
阅读(784) 评论(0)

Archlinux作为Openstreetmap服务器滚动更新

应用Archlinux作为Openstreetmap瓦片服务器已经一年了,总体情况比想象的好的多。期间,遇到了内核次版本升级,以及postgresql数据库升级,有惊无险,这里做一个记录。 注意内核版本与硬件驱动的同步更新,如果内核更新时,显示模块以及一些关键模块没有更新,如vmbox的驱动,则等待一个礼拜后再观察。 注意,在postgresql数据库主要版本滚动前,要把数据整体导出,清空。升级后,...
阅读(857) 评论(0)

利用ZoomPipeline迅速实现基于线程池的全异步TCP点对点代理

在博文《一种基于Qt的可伸缩的全异步C/S架构服务器实现》中提到的高度模块化的类可以进行任意拆解,实现非常灵活的功能。今天,我们来看一看一个公司局域网访问英特网云服务器的点对点代理例子,这个简单的代理支持设置负责传输的线程个数,可以根据配置文件同时服务多个链接。...
阅读(591) 评论(1)

MSYS2 瘦身小攻略

MSYS2, 吃硬盘的大神MSYS2,集成了 x86 x64两个开发环境,且可以使用 pacman 进行包管理,可谓方便的很!可是,这个东东也有一个很不好的地方,就是实在太占硬盘。尽管下载的软件包一般最大也就几百兆,但这可是高压缩格式的,一旦展开,会像干燥剂喝了水一样泵长起来。以我的MSYS2文件夹为例子,安装了常用工具如 qt、boost、opencv、 fftw、Openscenegraph等...
阅读(595) 评论(1)

利用 MSYS2 及osgEarth 构建三维地球模型(2) osgEarth 与 Qt的结合

上一篇中,我们已经使用傻瓜化的 pacman -S 安装了 openSceneGraph 与 osgEarth 。为了在Qt中导入osgEarth 的窗口,需要安装 osgQt 模块。 注意,这个包分32位、64位,同时,也分 release, debug,下载下来还是不小的,需要好几个GB的空间。...
阅读(840) 评论(3)

利用 MSYS2 及osgEarth 构建三维地球模型(1) 软件配置

提到开源三维地球模型绘制,比较有名的一个是基于 OpenSceneGraph 的 osgEarth。 在 windows下,编译这两个东西是非常恐怖的事情,存在大量的依赖性。好在,有万能的MSYS2,使得一切变得简单了。...
阅读(1076) 评论(2)

Qt 数据库操作与多语言支持的解决途径探讨

最近帮朋友使用Qt开发了一个毕业设计,题目要求实现繁简切换。对UI的元素进行国际化,大致牵扯到以下几个部分。 UI元素:如按钮、各种控件。 代码中的字符串:比如一些弹出消息等。 数据库内容:包括字段名、字段值。 这三个部分由易到难。数据库内容动态翻译,成为最难的一点,至今解决的很笨,很不满意。...
阅读(621) 评论(3)

ArchLinux-- OpenStreetMap瓦片服务器的新宿主

ArchLinux是近年来比较火的Linux滚动更新发行版。经过近一年多的测试、实验,笔者认为,ArchLinux尽管在许多地方略显激进,但仍旧适合做OpenStreetMap瓦片渲染服务器使用。这里,和大家分享一下收获。 配置好的镜像文件可从 百度云盘下载7Z压缩包。该镜像已经对地名进行了汉化。...
阅读(547) 评论(0)

OpenStreetMap 2017年1月 全球数据导入Benchmark

配置: Motherboard: ASUS Z-170AR CPU: Intel Core i7 6700K @ 4GHZ RAM: DDR4 64GB SSD: SAMSUM 850 1TB 环境: windows 7 x64 Host + Oracle VirtualBox (48GiB Virtual Memory) Archlinx 导入镜像情况:[archosm@archos...
阅读(726) 评论(0)
89条 共5页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:289811次
    • 积分:4091
    • 等级:
    • 排名:第7545名
    • 原创:86篇
    • 转载:3篇
    • 译文:0篇
    • 评论:317条
    最新评论