关闭
当前搜索:

机器学习小试(9)使用TensorFlow跑通一个通用增量学习流程-测试与应用

(接上文) 为了对神经网络的分类(拟合)效果进行测试,我们可以使用另一组训练样本,进行试分类,评价其代价函数的收敛程度。1. 模型测试该测试程序读取测试数据,并应用当前训练好的模型,进行分类,计算代价函数。如果模型奇异,则代价函数相较训练集会较高,反之,较低...
阅读(745) 评论(0)

机器学习小试(3)Tensorboard 可视化初步

上文里,我们做了一个网络,用于分类平面内的三类散点。这个网络的结构很清晰,但怎么可视化呢?根据教程中的指示,开始试试Tensorboard (TB). 由理论学习,知道了神经网络最重要的就是训练技术,也就是梯度的反向加权传导的推导。 由编程实践,发现TS竟然不用写偏导数计算这个步骤,于是思考为什么?由这篇博客,通过可视化验证了猜测:偏导数梯度计算,TS已经自动搞定啦!...
阅读(2822) 评论(0)

机器学习小试(2)使用多层神经网络进行分类实验

已经学到这篇教程的第十章啦!教程的数学背景清晰、讲述深浅适宜。动手实现一个分类器吧!借助TF,我们可以绕开烦恼的偏微分方程与矩阵权传递。此外,变步长下降算法能够很好的适应梯度变化。...
阅读(717) 评论(0)

机器学习小试(1)TensorFlow的第一个程序

最近,因为项目需要开始接触机器学习。虽然在学校对神经网络等算法已有接触,但早已忘得差不多了。在学习TF之前,建议和我一样,先从理论背景开始看起。...
阅读(600) 评论(2)
    个人资料
    • 访问:328817次
    • 积分:4608
    • 等级:
    • 排名:第7158名
    • 原创:97篇
    • 转载:3篇
    • 译文:0篇
    • 评论:336条
    最新评论