关闭

机器学习小试(5)机器学习应用前的认识准备

近期,见缝插针地逐一学习、实践了吴大神的视频教程。从一开始对“机器学习”这个名词的敬畏,到现在的疑惑,算是稍微能够提出点自己的问题了,在准备应用机器学习解决实际问题之前,在认识方面,先想想,机器学习的概念有多宽?人脑认知与特征构造,也许是绕不过的坎儿!使用算法之前,要想的事情很多!...
阅读(271) 评论(0)

机器学习小试(4)当前教材中场休息

学习http://mooc.guokr.com/note/16274/这个视频教程已经一段时间了,监督学习部分基本上过完,一些疑问,一些思考,值得记下来。 上半部分主要介绍了监督学习的一些经典方法。回过头来看,这部分经典方法主要解决函数拟合和分类问题。在训练集已知确切结果的情况下,通过线性回归、逻辑回归、构造神经网络等手段,完成对测试集输入的拟合、分类。...
阅读(394) 评论(0)

机器学习小试(3)Tensorboard 可视化初步

上文里,我们做了一个网络,用于分类平面内的三类散点。这个网络的结构很清晰,但怎么可视化呢?根据教程中的指示,开始试试Tensorboard (TB). 由理论学习,知道了神经网络最重要的就是训练技术,也就是梯度的反向加权传导的推导。 由编程实践,发现TS竟然不用写偏导数计算这个步骤,于是思考为什么?由这篇博客,通过可视化验证了猜测:偏导数梯度计算,TS已经自动搞定啦!...
阅读(2152) 评论(0)

机器学习小试(2)使用多层神经网络进行分类实验

已经学到这篇教程的第十章啦!教程的数学背景清晰、讲述深浅适宜。动手实现一个分类器吧!借助TF,我们可以绕开烦恼的偏微分方程与矩阵权传递。此外,变步长下降算法能够很好的适应梯度变化。...
阅读(380) 评论(0)

机器学习小试(1)TensorFlow的第一个程序

最近,因为项目需要开始接触机器学习。虽然在学校对神经网络等算法已有接触,但早已忘得差不多了。在学习TF之前,建议和我一样,先从理论背景开始看起。...
阅读(234) 评论(2)
    个人资料
    • 访问:290325次
    • 积分:4098
    • 等级:
    • 排名:第7551名
    • 原创:86篇
    • 转载:3篇
    • 译文:0篇
    • 评论:317条
    最新评论