关闭
当前搜索:

机器学习小试(9)使用TensorFlow跑通一个通用增量学习流程-测试与应用

(接上文) 为了对神经网络的分类(拟合)效果进行测试,我们可以使用另一组训练样本,进行试分类,评价其代价函数的收敛程度。1. 模型测试该测试程序读取测试数据,并应用当前训练好的模型,进行分类,计算代价函数。如果模型奇异,则代价函数相较训练集会较高,反之,较低...
阅读(754) 评论(0)

机器学习小试(8)使用TensorFlow跑通一个通用增量学习流程-增量学习

(接上文) 增量学习的过程,就是读取磁盘上原有的训练结果,并在此基础上继续训练。 这里用到的是 tensorFlow的saver,用于存取训练结果。 整个代码与前文的首次训练很像,只是把init()换为读取...
阅读(744) 评论(0)

机器学习小试(7)使用TensorFlow跑通一个通用增量学习流程-根据配置文件创建全连接网络

上文中,我们设计了一个配置文件,用来定义一个全连接神经网络模型的规模、学习方法。 本文,将介绍如何通过配置文件动态产生网络结构并首次训练、存盘。1. 根据配置文件定义神经网络全连接神经网络的计算是一串矩阵运算,可以看下图: 对一个T层(后续代码中变量名total_layer_size,算入了输出层,不含输入层)的网络,主要有以下变量: * 每层的节点(神经元)个数S,S[0]表示输入层的节...
阅读(605) 评论(0)

机器学习小试(6)使用TensorFlow跑通一个通用增量学习流程-设计配置文件

在前文中,初步学习了Tensorflow的基本用法。对于想尽快动手应用机器学习知识到实际开发中的人,还必须至少解决几个问题: 1. 网路结构的参数泛化,这里以全连接神经网络为例; 2. 海量训练数据的读取与训练; 3. 增量学习,即保存训练成果到磁盘,并不断学习; 4. 便捷的回归\拟合应用。本文在前文的基础上,进行一些修改。1. 引入一个配置文件目的:把全连接神经网络的规模、参数,变为动态...
阅读(584) 评论(0)

机器学习小试(5)机器学习应用前的认识准备

近期,见缝插针地逐一学习、实践了吴大神的视频教程。从一开始对“机器学习”这个名词的敬畏,到现在的疑惑,算是稍微能够提出点自己的问题了,在准备应用机器学习解决实际问题之前,在认识方面,先想想,机器学习的概念有多宽?人脑认知与特征构造,也许是绕不过的坎儿!使用算法之前,要想的事情很多!...
阅读(714) 评论(0)

机器学习小试(4)当前教材中场休息

学习http://mooc.guokr.com/note/16274/这个视频教程已经一段时间了,监督学习部分基本上过完,一些疑问,一些思考,值得记下来。 上半部分主要介绍了监督学习的一些经典方法。回过头来看,这部分经典方法主要解决函数拟合和分类问题。在训练集已知确切结果的情况下,通过线性回归、逻辑回归、构造神经网络等手段,完成对测试集输入的拟合、分类。...
阅读(736) 评论(0)

机器学习小试(3)Tensorboard 可视化初步

上文里,我们做了一个网络,用于分类平面内的三类散点。这个网络的结构很清晰,但怎么可视化呢?根据教程中的指示,开始试试Tensorboard (TB). 由理论学习,知道了神经网络最重要的就是训练技术,也就是梯度的反向加权传导的推导。 由编程实践,发现TS竟然不用写偏导数计算这个步骤,于是思考为什么?由这篇博客,通过可视化验证了猜测:偏导数梯度计算,TS已经自动搞定啦!...
阅读(2829) 评论(0)

机器学习小试(2)使用多层神经网络进行分类实验

已经学到这篇教程的第十章啦!教程的数学背景清晰、讲述深浅适宜。动手实现一个分类器吧!借助TF,我们可以绕开烦恼的偏微分方程与矩阵权传递。此外,变步长下降算法能够很好的适应梯度变化。...
阅读(724) 评论(0)

机器学习小试(1)TensorFlow的第一个程序

最近,因为项目需要开始接触机器学习。虽然在学校对神经网络等算法已有接触,但早已忘得差不多了。在学习TF之前,建议和我一样,先从理论背景开始看起。...
阅读(606) 评论(2)
    个人资料
    • 访问:329674次
    • 积分:4617
    • 等级:
    • 排名:第7143名
    • 原创:97篇
    • 转载:3篇
    • 译文:0篇
    • 评论:336条
    最新评论