Spark之Action操作

原创 2016年05月31日 22:50:07
1.reduce(func):通过函数func先聚集各分区的数据集,再聚集分区之间的数据,func接收两个参数,返回一个新值,新值再做为参数继续传递给函数func,直到最后一个元素
 
2.collect():以数据的形式返回数据集中的所有元素给Driver程序,为防止Driver程序内存溢出,一般要控制返回的数据集大小
 
3.count():返回数据集元素个数
 
4.first():返回数据集的第一个元素
 
5.take(n):以数组的形式返回数据集上的前n个元素
 
6.top(n):按默认或者指定的排序规则返回前n个元素,默认按降序输出
 
7.takeOrdered(n,[ordering]): 按自然顺序或者指定的排序规则返回前n个元素

例1:


def main(args: Array[String]) {
    val conf = new SparkConf().setMaster("local").setAppName("reduce")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(1 to 10,2)
    val reduceRDD = rdd.reduce(_ + _)
    val reduceRDD1 = rdd.reduce(_ - _) //如果分区数据为1结果为 -53
    val countRDD = rdd.count()
    val firstRDD = rdd.first()
    val takeRDD = rdd.take(5)    //输出前个元素
    val topRDD = rdd.top(3)      //从高到底输出前三个元素
    val takeOrderedRDD = rdd.takeOrdered(3)    //按自然顺序从底到高输出前三个元素
 
    println("func +: "+reduceRDD)
    println("func -: "+reduceRDD1)
    println("count: "+countRDD)
    println("first: "+firstRDD)
    println("take:")
    takeRDD.foreach(x => print(x +" "))
    println("\ntop:")
    topRDD.foreach(x => print(x +" "))
    println("\ntakeOrdered:")
    takeOrderedRDD.foreach(x => print(x +" "))
    sc.stop
  }

输出:

func +: 55
func -: 15 //如果分区数据为1结果为 -53
count: 10
first: 1
take:
1 2 3 4 5
top:
10 9 8
takeOrdered:
1 2 3

8.countByKey():作用于K-V类型的RDD上,统计每个key的个数,返回(K,K的个数)
 
9.collectAsMap():作用于K-V类型的RDD上,作用与collect不同的是collectAsMap函数不包含重复的key,对于重复的key。后面的元素覆盖前面的元素
 
10.lookup(k):作用于K-V类型的RDD上,返回指定K的所有V值

def main(args: Array[String]) {
   val conf = new SparkConf().setMaster("local").setAppName("KVFunc")
   val sc = new SparkContext(conf)
   val arr = List(("A", 1), ("B", 2), ("A", 2), ("B", 3))
   val rdd = sc.parallelize(arr,2)
   val countByKeyRDD = rdd.countByKey()
   val collectAsMapRDD = rdd.collectAsMap()
 
   println("countByKey:")
   countByKeyRDD.foreach(print)
 
   println("\ncollectAsMap:")
   collectAsMapRDD.foreach(print)
   sc.stop
 }

输出:

countByKey:
(B,2)(A,2)
collectAsMap:
(A,2)(B,3)

Spark总结(三)——RDD的Action操作

1、foreach操作:对RDD中的每个元素执行f函数操作,返回Unit。def funOps1(): Unit = { var rdd1 = sc.parallelize(List(1, 2, ...
  • zzh118
  • zzh118
  • 2016年07月27日 19:17
  • 510

spark常用函数:transformation和action

1、RDD提供了两种类型的操作:transformation和action 所有的transformation都是采用的懒策略,如果只是将transformation提交是不会执行计算的,计算只有在...

Spark RDD Action 详解---Spark学习笔记8

Spark RDD Action 详解配有实际例子

spark RDD transformation和action操作

spark RDD transformation和action 1.启用spark-shell,使用根目录下的test.txt作为文件的示例 scala> sc res30: org.apache.s...

Spark基础的transformation 和 action的函数操作

Spark基础的transformation和 action的函数操作 函数示例: map函数: 操作数据集: In [1]: rdd = sc.textFile(...

spark rdd详解二(transformation与action操作)

sparkRdd transformation action

Spark算子:RDD行动Action操作(3)–aggregate、fold、lookup

关键字:Spark算子、Spark函数、Spark RDD行动Action、aggregate、fold、lookup aggregate def aggregate[U](zeroValue: U)...

spark的RDD中的action(执行)和transformation(转换)两种操作中常见函数介绍

spark的RDD中的action(执行)和transformation(转换)两种操作中常见函数介绍 (1) 弹性分布式数据集(RDD) Spark是以RDD概念为中心运行的。RD...

Spark常用函数讲解之Action操作

RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集 RDD有两种操作算子:         Tr...

spark RDD算子(十一)之RDD Action 保存操作saveAsTextFile,saveAsSequenceFile,saveAsObjectFile,saveAsHadoopFile 等

关键字:Spark算子、Spark函数、Spark RDD行动Action、Spark RDD存储操作、saveAsTextFile、saveAsSequenceFile、saveAsObjectFi...
  • T1DMzks
  • T1DMzks
  • 2017年05月01日 00:47
  • 1299
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Spark之Action操作
举报原因:
原因补充:

(最多只允许输入30个字)