关闭

【剑指offer】连续子数组的最大和

91人阅读 评论(0) 收藏 举报
分类:

题目描述

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?

这实际上是一个逐步比较的过程,假设累加进行到某一步,继续累加下一个数的时候发现和变小了,就应该重新计算当前累加的和,这实际上就是一个重新赋值的过程。如果累加之后发现变大了,这当然是我们想要的,自然就继续累加了。累加之后再判断是否大于原来的最大值,如果不是的话,就重新赋值最大值为当前累加的和(因为它更大)。

package com.gpl.offer.jianzhi;

/**
 * Created by gpl on 2016/8/30.
 */
public class ArraySum {     //连续子数组的最大和

    public int findarray(int[] array){
        if(array == null || array.length == 0)
            return 0;
        int sum = 0;
        int curSum = 0;
        for(int i=0;i<array.length;i++){
            if(curSum<=0)
                curSum = array[i];
            else
                curSum += array[i];
            if(curSum > sum)
                sum = curSum;
        }
        return sum;
    }

    public static void main(String[] args){
        int[] array = new int[]{1,-2,3,10,-4,7,2,-5};
//        int[] array = {1,3,5,-6,9,10,-11,20};
        ArraySum as = new ArraySum();
        System.out.println(as.findarray(array));

    }
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:290782次
    • 积分:4245
    • 等级:
    • 排名:第7485名
    • 原创:126篇
    • 转载:118篇
    • 译文:0篇
    • 评论:10条
    最新评论