# An Easy Problem!

Have you heard the fact "The base of every normal number system is 10" ? Of course, I am not talking about number systems like Stern Brockot Number System. This problem has nothing to do with this fact but may have some similarity.

You will be given an N based integer number R and you are given the guaranty that R is divisible by (N-1). You will have to print the smallest possible value for N. The range for N is 2 <= N <= 62 and the digit symbols for 62 based number is (0..9 and A..Z and a..z). Similarly, the digit symbols for 61 based number system is (0..9 and A..Z and a..y) and so on.


import java.util.*;
import java.math.*;

public class Main
{
public static int solve(String s)
{
int ans = 0;
for(int i=0;i<s.length();i++)
{
char ch = s.charAt(i);
if(ch>='0'&&ch<='9')
{
int temp = Integer.parseInt(String.valueOf(ch));
if(ans<temp)ans = temp;
}
else if(ch>='A'&&ch<='Z')
{
int temp = ch-'A'+10;
if(ans<temp) ans = temp;
}
else if(ch>='a'&&ch<='z')
{
int temp=ch-'a'+36;
if(ans<temp) ans = temp;
}
else
ans = 62;
}
if(ans==62||ans==0)return 63;

boolean flag = false;
int i=0;
for( i=ans+1;i<=62;i++)
{
int mod=0;
char ch;
for(int j=0;j<s.length();j++)
{
ch = s.charAt(j);
if(ch>='0'&&ch<='9')
{
int temp = Integer.parseInt(String.valueOf(ch));
mod = (mod*i+temp)%(i-1);
}
else if(ch>='A'&&ch<='Z')
{
int temp = ch-'A'+10;
mod =(mod*i+temp)%(i-1);	    		}
else if(ch>='a'&&ch<='z')
{
int temp=ch-'a'+36;
mod =(mod*i+temp)%(i-1);
}
}
if(mod==0){flag = true;break;}
}
if(flag) return i;
else return 63;

}
public static void main(String[]args)
{
Scanner in = new Scanner(System.in);
String s;
while(in.hasNext())
{
s = in.next();
int te = Main.solve(s);
if(te==63)
System.out.println("such number is impossible!");
else
System.out.println(te);
}
}
}

• 本文已收录于以下专栏：

举报原因： 您举报文章：An Easy Problem! 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)