基于baseline和stochastic gradient descent的个性化推荐系统

本文介绍了Koren在2008年提出的结合矩阵分解与邻域模型的协同过滤方法,并通过Movielens数据集进行实验验证。文中详细阐述了Baseline估计、目标函数以及使用随机梯度下降法进行优化的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章主要介绍的是koren 08年发的论文[1],  2.1 部分内容(其余部分会陆续补充上来)。

 koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长。考虑到写文章目地主要是已介绍总结方法为主,所以采用Movielens 数据集。

要用到的变量介绍:


Baseline estimates

     

object function:

梯度变化(利用stochastic gradient descent算法使上述的目标函数值,在设定的迭代次数内,降到最小)

系统评判标准:


参数设置:


迭代次数maxStep = 100, 学习速率(梯度变化速率)取0.99  还有的其他参数设置参考引用论文[2]




具体的代码实现

''''' 
Created on Dec 11, 2012 
 
@Author: Dennis Wu 
@E-mail: hansel.zh@gmail.com 
@Homepage: http://blog.csdn.net/wuzh670 
 
Data set download from : http://www.grouplens.org/system/files/ml-100k.zip 
 
'''  
from operator import itemgetter, attrgetter  
from math import sqrt  
import random  
  
def load_data():  
      
    train = {}  
    test = {}  
      
    filename_train = 'data/ua.base'  
    filename_test = 'data/ua.test'  
      
    for line in open(filename_train):  
        (userId, itemId, rating, timestamp) = line.strip().split('\t')  
        train.setdefault(userId,{})  
        train[userId][itemId] = float(rating)  
    
    for line in open(filename_test):  
        (userId, itemId, rating, timestamp) = line.strip().split('\t')  
        test.setdefault(userId,{})  
        test[userId][itemId] = float(rating)  
      
    return train, test  
  
def calMean(train):  
    sta = 0  
    num = 0  
    for u in train.keys():  
        for i in train[u].keys():  
            sta += train[u][i]  
            num += 1  
    mean = sta*1.0/num  
    return mean  
  
def initialBias(train, userNum, movieNum):  
  
    mean = calMean(train)  
    bu = {}  
    bi = {}  
    biNum = {}  
    buNum = {}  
      
    u = 1  
    while u < (userNum+1):  
        su = str(u)  
        for i in train[su].keys():  
            bi.setdefault(i,0)  
            biNum.setdefault(i,0)  
            bi[i] += (train[su][i] - mean)  
            biNum[i] += 1  
        u += 1  
          
    i = 1  
    while i < (movieNum+1):  
        si = str(i)  
        biNum.setdefault(si,0)  
        if biNum[si] >= 1:  
            bi[si] = bi[si]*1.0/(biNum[si]+25)  
        else:  
            bi[si] = 0.0  
        i += 1  
  
    u = 1  
    while u < (userNum+1):  
        su = str(u)  
        for i in train[su].keys():  
            bu.setdefault(su,0)  
            buNum.setdefault(su,0)  
            bu[su] += (train[su][i] - mean - bi[i])  
            buNum[su] += 1  
        u += 1  
          
    u = 1  
    while u < (userNum+1):  
        su = str(u)  
        buNum.setdefault(su,0)  
        if buNum[su] >= 1:  
            bu[su] = bu[su]*1.0/(buNum[su]+10)  
        else:  
            bu[su] = 0.0  
        u += 1  
  
    return bu,bi,mean  
  
def sgd(train, test, userNum, movieNum):  
  
    bu, bi, mean = initialBias(train, userNum, movieNum)  
  
    alpha1 = 0.002  
    beta1 = 0.1  
    slowRate = 0.99  
    step = 0  
    preRmse = 1000000000.0  
    nowRmse = 0.0  
    while step < 100:  
        rmse = 0.0  
        n = 0  
        for u in train.keys():  
            for i in train[u].keys():  
                pui = 1.0 * (mean + bu[u] + bi[i])  
                eui = train[u][i] - pui  
                rmse += pow(eui,2)  
                n += 1  
                bu[u] += alpha1 * (eui - beta1 * bu[u])  
                bi[i] += alpha1 * (eui - beta1 * bi[i])  
  
        nowRmse = sqrt(rmse*1.0/n)  
        print 'step: %d      Rmse: %s' % ((step+1), nowRmse)  
        if (nowRmse < preRmse):  
            preRmse = nowRmse  
        alpha1 *= slowRate  
        step += 1  
    return bu, bi, mean  
  
def calRmse(test, bu, bi, mean):  
      
    rmse = 0.0  
    n = 0  
    for u in test.keys():  
        for i in test[u].keys():  
            pui = 1.0 * (mean + bu[u] + bi[i])  
            eui = pui - test[u][i]  
            rmse += pow(eui,2)  
            n += 1  
    rmse = sqrt(rmse*1.0 / n)  
    return rmse;  
     
if __name__ == "__main__":  
  
  
    # load data  
    train, test = load_data()  
      
    # baseline + stochastic gradient descent  
    bu, bi, mean = sgd(train, test, 943, 1682)  
      
    # compute the rmse of test set  
    print 'the Rmse of test test is: %s' % calRmse(test, bu, bi, mean)  

实验结果


REFERENCES

1.Y. Koren. Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model. Proc. 14th ACM SIGKDD Int. Conf. On Knowledge Discovery and Data Mining  (KDD08), pp. 426434, 2008.

2. Y.Koren.  The BellKor Solution to the Netflix Grand Prize  2009


转载请注明:转自 zh's note    http://blog.csdn.net/wuzh670/


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值