[LeetCode]632. Smallest Range

本文介绍了一种解决LeetCode中“最小范围”问题的方法,该问题要求从多个递增数组中找到一个覆盖所有数组元素的最小区间。通过使用优先队列(PQ)和类似归并排序的思想,实现了一种高效算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://leetcode.com/problems/smallest-range/#/description

给k个递增数组,找出一个最小范围,保证每个数组内至少有一个数字落在这个区间上






类似归并排序思想——多维有序数组问题考虑mergeSort+pq思想

pq内每次poll出当前最小值,max保存当前已访问的最大值,当前pq中的所有值一定在这个区间内(满足该区间覆盖所有数组条件),只要看这个区间是否为更小的那个区间即可

public class Solution {
    public int[] smallestRange(List<List<Integer>> nums) {
        int start = -1;
        int end = -1;
        int max = Integer.MIN_VALUE;
        int range = Integer.MAX_VALUE;
        PriorityQueue<Element> queue = new PriorityQueue(new Comparator<Element>() {
            public int compare(Element e1, Element e2) {
                return e1.val - e2.val;
            }
        });
        for (int i = 0; i < nums.size(); i++) {
            Element e = new Element(nums.get(i).get(0), 0, i);
            queue.offer(e);
            max = Math.max(max, e.val);
        }
        while (queue.size() == nums.size()) {
            Element e = queue.poll();
            if (max - e.val < range) {
                range = max - e.val;
                start = e.val;
                end = max;
            }
            if (e.index + 1 < nums.get(e.row).size()) {
                e.index = e.index + 1;
                e.val = nums.get(e.row).get(e.index);
                queue.offer(e);
                if (e.val > max) {
                    max = e.val;
                }
            }
        }
        return new int[]{start, end};
    }
    class Element {
        int index;
        int row;
        int val;
        public Element(int val, int index, int row) {
            this.val = val;
            this.index = index;
            this.row = row;
        }
    }
}


内容概要:本文详细比较了GPU、TPU专用AI芯片在大模型推理优化方面的性能、成本及适用场景。GPU以其强大的并行计算能力和高带宽显存,适用于多种类型的神经网络模型和计算任务,尤其适合快速原型开发和边缘计算设备。TPU专为机器学习设计,擅长处理大规模矩阵运算密集型任务,如Transformer模型的推理,具有高吞吐量和低延迟特性,适用于自然语言处理和大规模数据中心的推理任务。专用AI芯片通过高度定制化架构,针对特定神经网络模型进行优化,如卷积神经网络(CNN),在处理特定任务时表现出色,同时具备低功耗和高能效比的优势,适用于边缘计算设备。文章还介绍了各自的优化工具和框架,如CUDA、TensorRT、TPU编译器等,并从硬件成本、运营成本和开发成本三个角度进行了成本对比。 适合人群:从事人工智能、深度学习领域的研究人员和技术人员,尤其是对大模型推理优化感兴趣的读者。 使用场景及目标:①帮助读者理解GPU、TPU和专用AI芯片在大模型推理中的优缺点;②为选择适合的硬件平台提供参考依据,以实现最优的推理性能和成本效益;③介绍各种优化工具和框架,帮助开发者高效部署和优化模型。 其他说明:本文不仅涵盖了硬件架构特性,还深入探讨了优化技术和应用场景,旨在为读者提供全面的技术参考。在选择硬件平台时,需综合考虑具体任务需求、预算限制及开发资源等因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值