关闭

方兴未艾的社会计算

标签: 社会计算
623人阅读 评论(0) 收藏 举报
分类:
        随着信息数字化和网络化的进程不断加快,人们的行为轨迹越来越多地被记录下来,这使得利用计算技术观察和研究社会成为可能。2009年2月,美国哈佛大学大卫·拉泽(DavidLazer)等15位美国学者在《Science》上联合发表了一篇具有里程碑意义的文章“Computational SocialScience”,该文指出:“计算社会科学”这一研究领域正在兴起,人们将在前所未有的深度和广度上自动地收集和利用数据,为社会科学的研究服务。

        正如“计算语言学”又称为“自然语言处理”一样,“计算社会科学”又可以叫作“社会计算”,字面不同的术语其侧重点略有不同,但概念基本一致。本文遵从近年来国内学者的习惯,使用“社会计算”一词。

        那么,到底什么是“社会计算”呢?对于一个新兴的跨学科的研究领域往往是仁者见仁,智者见智,很难给出一个公认的定义。一般而言,社会计算是指社会行为和计算系统交叉融合而成的一个研究领域,研究的是如何利用计算系统帮助人们进行沟通与协作,如何利用计算技术研究社会运行的规律与发展趋势。

       所谓“利用计算系统帮助人们进行沟通与协作”是指帮助人们在互联网上建设虚拟社会,对现实社会中人与人的关系进行复制和重构,使人们更紧密地联系在一起,随时随地互相通讯,以协作的方式生产知识。这方面的研究包括社会网络服务、群体智慧等。

       所谓“利用计算技术研究社会运行的规律与发展趋势”,是指以社交网络和社会媒体为研究对象,从中发现社会关系、社会行为的规律,预测政策实施的可行性。社会学鼻祖奥古斯特·孔德最初定义社会学时,希望社会学能够使用类似物理学的方法,成为经得起科学规则考验的一门学科,互联网背景下的社会计算使这一理念具有了现实可行性。这方面的研究包括社会网络分析、内容计算、人工社会等。

 

   研究内容

   1.社交网络服务(Social Network Service,SNS)

        谈到社交网络服务,就会让人想起时下最热门的Facebook。社交网络服务研究的是利用信息技术构建虚拟空间,实现社会性的交互和通信。SNS还有一种解释是社会网络软件(SocialNetwork Software),电子邮件、网络论坛等许多传统网络工具都可以视为一种社会软件。

        在社交网络服务的网站上,人们以认识朋友的朋友的方式,扩展自己的人脉。国内最有名的社交网络服务网站是“人人网”,他们从实践中总结出以下值得重点关注的研究点:社会关系强度、信息的绝对价值和相对价值、新鲜事排序算法、隐私性以及社会化搜索。 

    2.群体智慧(Collective Intelligence)

       群体智慧的典型应用是“维基百科”和“百度知道”。这些互联网平台系统不仅帮助用户相互沟通联系,更重要的是将用户组织起来,发挥他们的群体智慧,以协作的方式一起创造、加工和分享知识。

      2005年,美国卡耐基梅隆大学的路易斯·冯·安(Luis Von Ahn)提出“人本计算(HumanComputation)”的思想,用验证码、游戏等方式调动网民的热情,使众多的人脑自觉不自觉地参与到计算任务中,轻松地解决了本来非常耗时耗力的问题。这也是群体智慧的体现。

       知识获取是一切智能系统的瓶颈,传统的依靠专家编辑知识的方式效率太低,无法满足大规模真实信息处理的需求。在网络社会的大背景下,群体智慧的出现为知识获取提供了一条崭新的充满希望的道路。如何巧妙地设计用户界面以激发用户的参与热情,如何克服人脑计算的不精确性,如何将人脑和电脑最佳地结合起来,都是值得深入研究的问题。

    3.社会网络分析(Social Network Analysis)

       社会网络分析依据网络理论看待社会,节点是网络中的独立角色,边是社会关系,社会网络就是由节点和边构成的一张图,这张图往往非常复杂,节点之间的关系类型多种多样。

        社会网络分析的典型例子是社区计算。中科院计算技术研究所的研究工作指出:社区是社会信息网络的普遍现象,大规模信息网络中的一些社会化特征在全局层面往往具有稳定的统计规律。如何度量、发现和利用这些规律是大规模社会信息网络分析与处理的一个基础问题。一般而言,社区结构是度量和利用这些特性的基本单元。因此,发现一个网络中有意义的、自然的、相对稳态的社区结构,对网络信息的搜索与挖掘、信息的推荐以及网络演化与扩散的预测具有重要价值。

    4.内容计算(Content Computing)

        除社会网络外,社会媒体也是分析理解社会的重要素材,如新闻、论坛、博客、微博等。由于它们都以语言文字为主要展示形式,因此从事内容计算研究的学者需要掌握语言分析技术。当前内容计算的热点包括舆情分析、人际关系挖掘、微博应用等。

   舆情分析:传统上,对舆情的研究主要有两种方法:一是观察思辨,,二是问卷调查。前者缺乏数据支持,后者采集的数据量亦有限。互联网技术为舆情分析提供了全新的技术路线,通过对各种社会媒体的跟踪与挖掘,结合传统的舆论分析理论,可以有效地观察社会的状态,并能辅助决策,及时发出预警。

   基于内容的人际关系挖掘:互联网中蕴含着大量公开的人名实体和人际关系信息。利用文本信息抽取技术可以自动地抽取人名,识别重名,自动计算出人物之间的关系,进而找出关系描述词,形成一个互联网世界的社会关系网。微软亚洲研究院的“人立方”就是一个典型系统。

   微博应用:如果说“人人网”是中国的Facebook,那么“新浪微博”则是中国的Twitter。近来“新浪微博”迅猛发展,2010年11月,其用户数为5000万,2011年3月,其用户数突破1亿,在四个月内翻了一倍。“微博”同时具有“社会网络”和“媒体平台”的属性,它催生了信息生产和传播方式的革命,对社会事件和人们的意识已然产生了很大影响。“微博”明确地定位为平台,它提供开放的API接口,积极支持第三方应用的发展,基于“微博”的研究与开发必将成为未来一段时期互联网学术界和产业界的热点。

    5.人工社会(Artificial Society)

        社会计算的一个重要使命是对复杂社会问题建立计算模型,进行实验分析并提供决策支持。利用计算机模拟手段测试和验证社会经济政策的效果,已成为一个公共政策领域的迫切需求,这些需求催生了“人工社会”、“平行社会”等诸多相关领域的研究。

       通过建立各种人工社会,构造相应的平行系统,为“全面、综合、可持续的科学发展观”提供了一种可行的分析和评估方法,并应用于复杂社会系统的管理与控制,可以为将要到来的数字化社会和数字化政府管理奠定基础。中科院自动化所是“人工社会”这一研究课题的积极倡导者和实践者。

   社会计算面临的挑战

   社会计算方兴未艾,生机勃勃,却也面临诸多挑战:

    1.个人数据整合:同一个人在不同场合、不同终端上留下的各种行为记录目前都散落在不同的存储节点上,要整合这些信息,不但涉及技术问题,更涉及复杂的管理问题。

    2.巨量数据存储:为大规模人类行为进行全面实时的记录,需要巨大的数据存储和管理能力,当前的计算机系统还无法满足这一需求。

    3.个人隐私保护:出于隐私保护方面的考虑,大型互联网公司往往不敢向学术界公开用户日志,致使学术界对社会计算的研究遇到用户数据采集方面的严重困难。匿名化处理是一种解决方案,但好事者依然可以从匿名后的数据中发现个人行为的轮廓,使匿名化处理失效。

    4.研究成果保密:如果揭示出某种社会关系或某个组织的运行规律,是否会受到相关个人和组织的质疑或反对呢?对研究成果要达到何等保密程度呢?

    5.学术队伍组织:由于背景各异,如何使计算机专家和社会科学领域的专家相互理解,密切配合,一道推进社会计算的研究,并非易事。同时,如何建设社会计算学科,培养既懂计算科学,又懂社会科学的人才,也是亟待探索的话题。

 

   结语

        社会计算是一个方兴未艾的多学科交叉领域,网络科学、复杂系统、数据挖掘、社会学、管理科学、语言处理、信息检索等不同背景的学者从不同的角度对社会计算进行了研究。社会计算的研究横跨文理,为社会科学提供了一条革命性的计算之路,其研究成果对于社会管理、社会生活都将产生重大影响。随着学术界、产业界和政府对社会计算的认识不断加深,关注度不断提高,社会计算正逐步进入蓬勃发展的阶段。

0
0

  相关文章推荐
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:216983次
    • 积分:3359
    • 等级:
    • 排名:第10077名
    • 原创:107篇
    • 转载:171篇
    • 译文:0篇
    • 评论:16条
    博客专栏
    最新评论