deeplab script---python

原创 2016年06月01日 07:53:21
import os,sys, subprocess
#get current folder and enter my_script folder
sys.path.insert(0, os.getcwd()+'/python/my_script/')

from tester import tester
from trainer import trainer
from crf_runner import crf_runner, grid_search
import tools

# MODIFY PATH for YOUR SETTING
EXP='voc12' #dataset
NET_ID='vgg128_noup' #model name
NUM_LABELS=21
YEAR = 'VOC2012'
DATA_ROOT='/media/ali/VOCdevkit/VOC2012'
#DATA_ROOT=subprocess.Popen('cd .. && pwd', stdout=subprocess.PIPE, shell=True).communicate()[0][:-1] + '/VOCdevkit/' + YEAR
OLD_ROOT=''#only change if you are changing the path to images
DEV_ID=0 #gpu id
LOAD_MAT_FILE = 1
       
train_set_SUFFIX='_aug'

train_set_STRONG='train'
#train_set_STRONG='train200'
#train_set_STRONG='train500'
#train_set_STRONG='train1000'
#train_set_STRONG='train750'

train_set_WEAK_LEN=0 #'5000'


# Run

RUN_TRAIN=1 # Training #1 (on train_aug)
RUN_TEST=0  # Test #1 specification (on val or test)
RUN_TRAIN2=0 # Training #2 (finetune on trainval_aug)
RUN_TEST2=0 # Test #2 on official test set
RUN_SAVE=0 # Translate and save the model
RUN_DENSECRF=0 # To Run Densecrf
GRID_SEARCH=0 # To Run ONLY if you dont know what parameters to use for Densecrf




#####

def env_creater():
    dic = {'EXP': EXP, 'NET_ID': NET_ID, 'NUM_LABELS': NUM_LABELS, 'DATA_ROOT': DATA_ROOT, 'DEV_ID':DEV_ID, 'OLD_ROOT': OLD_ROOT}
    dic.update({'train_set_SUFFIX': train_set_SUFFIX, 'train_set_STRONG': train_set_STRONG, 'train_set_WEAK_LEN': train_set_WEAK_LEN})
    dic.update({'year': YEAR, 'POSTPROCESS': 0})
    tools.environment_variable_creator(dic)


def run(RUN_TRAIN, RUN_TEST, RUN_TRAIN2, RUN_TEST2, RUN_SAVE):
    tools.mkdir()
    if RUN_TRAIN : trainer()
    if RUN_TEST : tester()
    if RUN_TRAIN2 : trainer(type_=2)
    if RUN_TEST2 : tester(type_=2)
    if RUN_SAVE: tools.saver()
    if RUN_DENSECRF : crf_runner(LOAD_MAT_FILE, RUN_TRAIN2)
    if GRID_SEARCH : grid_search(LOAD_MAT_FILE, RUN_TRAIN2) 


if __name__ == "__main__":
    env_creater()

    run(RUN_TRAIN, RUN_TEST, RUN_TRAIN2, RUN_TEST2, RUN_SAVE)

版权声明:本文为博主原创文章,未经博主允许不得转载。

从FCN到DeepLab

前言  最近看了一些语义分割的文章DeepLab,写写自己的感受,欢迎指正。介绍  图像语义分割,简单而言就是给定一张图片,对图片上的每一个像素点分类。   图像语义分割,从FCN把深度...
  • junparadox
  • junparadox
  • 2016年09月22日 15:33
  • 10696

论文阅读笔记:图像分割方法deeplab以及Hole算法解析

1. deeplab方法概述 2. deeplab对**FCN**更加优雅的处理方式 3. Hole算法 4. 代码
  • tangwei2014
  • tangwei2014
  • 2016年01月04日 00:29
  • 20327

【Deep Learning】DeepLab

【Deep Learning】DeepLab
  • chenyj92
  • chenyj92
  • 2016年12月04日 22:22
  • 3021

Deeplab v2 调试全过程(Ubuntu 16.04+cuda8.0)

Deeplabv2 调试全过程(Ubuntu 16.04+cuda8.0)本人刚接触深度学习与caffe,经过几天的填坑,终于把Deeplabv2的 run_pascal.sh与run_densecr...
  • ruotianxia
  • ruotianxia
  • 2017年10月24日 17:17
  • 1837

Deeplab v2 run_pascal.sh run_densecrf.sh

  • 2017年08月21日 18:09
  • 4KB
  • 下载

多篇用DL做Semantic Segmentation的文章总结

这是我在其中一篇文章(deconvolution network)中看到的近期一些方法的评估表: 下面谈到的一些文章整理都是关于以上的方法。 1.      FCN8s 文章出处:CVPR2...
  • u011148330
  • u011148330
  • 2015年10月27日 12:11
  • 12917

DeepLab V2安装配置

2016年Semantic Segmentation方向比较出色的一篇文章,DeepLab: Semantic Image Segmentation with Deep Convolutional N...
  • tianrolin
  • tianrolin
  • 2017年05月05日 22:44
  • 6757

DeepLab v2 配置

DeepLab v2配置过程不是很麻烦,但资料很少,此处详解一下: 1)cudnn降级:因为Caffe版本所导致的问题,DeepLab的作者推荐使用cudnn v4,如果不是的话,可以考虑降级或者文...
  • xczexcel
  • xczexcel
  • 2017年04月15日 17:18
  • 2783

论文阅读理解 - (Deeplab-V3)Rethinking Atrous Convolution for Semantic Image Segmentation

Deeplab-V3Rethinking Atrous Convolution for Semantic Image Segmentation摘要 DeeplabV1&V2 - 带孔卷积(atrous...
  • oJiMoDeYe12345
  • oJiMoDeYe12345
  • 2017年07月18日 17:32
  • 4730

Deeplab v3 | Rethinking Atrous Convolution for Semantic Image Segmentation

鉴于之前写过deeplab v1与2, 继续读一读新出的v3 整体来说,这篇文章还是在探究两个大家一直在做的问题:全局信息于多尺度信息。另外作者还强调了BN的使用。本文在原有的框架下提出了两种框架: ...
  • bea_tree
  • bea_tree
  • 2017年06月21日 13:04
  • 5150
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:deeplab script---python
举报原因:
原因补充:

(最多只允许输入30个字)