云计算大会有感—MapReduce和UDF

(转载请注明出处:http://blog.csdn.net/buptgshengod)1.参会有感      首先还是非常感谢CSDN能给我票,让我有机会参加这次中国云计算峰会。感觉不写点什么对不起CSDN送我的门票(看到网上卖一千多一张呢)。        还是得从国家会议中心说起,两年前lz曾经在那当过IDF的志愿者,当时是纯体力劳动,负责给参会人员发一些杂志什么的,当时苦逼的为了多蹭一个盒饭...
阅读(3397) 评论(1)

【机器学习算法-python实现】协同过滤(cf)的三种方法实现

(转载请注明出处:http://blog.csdn.net/buptgshengod)...
阅读(4229) 评论(0)

linux修改path路径

修改Linux的PATH方法有三(添加用户的路径到PATH): 方法一: 直接在命令行中输入:#PATH=$PATH:/etc/apache/bin。这种方法只对当前会话有效,也就是说每当登出或注销系统后,PATH设置就会恢复原有设置。 方法二: 修改/etc/profile文件。在/etc/profile文件的适当位置添加PATH=$PATH:/etc/apache/bin (注意:=即等号两边...
阅读(1137) 评论(1)

SQL语句学习总结

(转载请注明出处:http://blog.csdn.net/buptgshengod)1.归并重复项 +------+-------+| user | brand |+------+-------+| aa   | 9     || aa   | 9     || bb   | 4     || bb   | 3     || cc   | 9     |+------+-------+...
阅读(1189) 评论(0)

【机器学习算法-python实现】Adaboost的实现(1)-单层决策树(decision stump)

(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景      上一节学习支持向量机,感觉公式都太难理解了,弄得我有点头大。不过这一章的Adaboost线比较起来就容易得多。Adaboost是用元算法的思想进行分类的。什么事元算法的思想呢?就是根据数据集的不同的特征在决定结果时所占的比重来划分数据集。就是要对每个特征值都构建决策树,并且赋予他们不同的...
阅读(4712) 评论(1)

【机器学习算法-python实现】svm支持向量机(3)—核函数

(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景知识     前面我们提到的数据集都是线性可分的,这样我们可以用SMO等方法找到支持向量的集合。然而当我们遇到线性不可分的数据集时候,是不是svm就不起作用了呢?这里用到了一种方法叫做核函数,它将低维度的数据转换成高纬度的从而实现线性可分。      可能有的人不明白为什么低维度的数据集转换成高...
阅读(3152) 评论(0)

【机器学习算法-python实现】svm支持向量机(2)—简化版SMO算法

(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景知识       通过上一节我们通过引入拉格朗日乗子得到支持向量机变形公式。详细变法可以参考这位大神的博客——地址   参照拉格朗日公式F(x1,x2,...λ)=f(x1,x2,...)-λg(x1,x2...)。我们把上面的式子变型为:  约束条件就变成了:...
阅读(2696) 评论(0)
    我的微信公众号

    作者公众号:凡人机器学习

    凡人机器学习

    作者新书《机器学习实践应用》

    主要讲述算法和业务的结合,适合初学者

    机器学习实践应用

    京东地址

    个人资料
    • 访问:693877次
    • 积分:9691
    • 等级:
    • 排名:第1897名
    • 原创:220篇
    • 转载:39篇
    • 译文:0篇
    • 评论:433条
    博客专栏
    统计