关闭
当前搜索:

Tensorflow运作之变量

引自:http://wiki.jikexueyuan.com/project/tensorflow-zh/how_tos/variables.html 在训练模型时,需要使用变量来存储和更新参数。 变量包含张量(Tensor)存放于内存的缓存区。 建模时它们需要明确地初始化,模型训练后它们必须被存储到磁盘。 这些变量的值可在之后的模型训练和分析时被加载。 1、创建 创建变量需要将一个张量...
阅读(73) 评论(0)

TensorFlow之基本结构

TensorFlow: 使用图(graph)来表示计算任务。 在被称之为会话(Session)的上下文(context)中执行图。 使用tensor表示数据 使用变量(Variable)维护状态 使用feed和fetch可以为任意的操作(arbitrary operation)赋值或者从其中获得数据。 综述TensorFlow是一个编程系统,使用图来表示计算任务。图中的节点被称之为op(opera...
阅读(35) 评论(0)

双线性插值

双线性插值就是在x轴和y轴两个方向上进行插入操作。假设A、B两个点,要在AB中间插入一个点C(C坐标在AB连线上),就直接让C的值落在AB的连线上即可。 例如A点坐标(0, 0),值为3,B点坐标(0,2),值为5,要对坐标(0,1)的点C进行插值,就让C落在AB上,值就为4。 如果C点不在AB线上,如图所示 已知Q12,Q22,Q11,Q21,但是要插值的点为P点,这就要双线性插值了,首...
阅读(88) 评论(0)

ROI Pooling

ROI Pooling 是pooling层的一种,ROI(Region of interest).ROI是指矩形框,往往经过rpn后,输出的不止一个矩形框,所以需要对多个ROI进行pooling。 输入:1、data: 指的是进入RPN层之前的那个Conv层的Feature Map,通常我们称之为”share_conv“ 2、rois: 指的是RPN层的输出,一堆矩形框,形状为1*1*5*1(4...
阅读(108) 评论(0)

Caffe系列之命令行解析

caffe运行提供三种接口:C++接口,python接口和matlab接口caffe的C++主程序(caffe.cpp)放在根目录下的tools文件夹内,当然还有一些其他功能文件,如: convert_imageset.cpp, train_net.cpp, test_net.cpp等也放在这个文件夹内。经过编译后,这些文件都编译成了可执行文件,放在了./build/tools/文件夹内。因此我们...
阅读(34) 评论(0)

caffe系列之:Blob,Layer and Net以及对应配置文件的编写

深度网络是一个组合模型,它由许多相互连接的层组合而成的,它按照一定的策略,一层一层的搭建出自己的模型。它将所有的信息数据定义为blobs,从而进行便利的操作和通讯。Blob是caffe的一种标准的数组,一种统一的内存接口,它详细描述了信息是如何存储的、以及如何在层之间的通讯的。 1、blob Blobs封装了运行时的数据信息,提供了CPU和GPU的同步。从数学上来说,Blob是一个N维数组。它是...
阅读(61) 评论(0)

Caffe系列之常用层

softmax_loss层,Inner_Product层,accuracy层,reshape层和dropout层及其他参数配置。1、softmax-loss softmax-loss层和softmax层计算大致相同,softmax是一个分类器,计算的是类别概率,是Logistic Regression的一种推广。 softmax与softmax-loss的区别: softmax计算公式:...
阅读(45) 评论(0)

caffe系列之激活函数

1、Sigmoidlayer{ name: "encod1act" bottom: "encode1" top: "encode1neuron" type: "Sigmoid" }2、ReLU/Retified-Linear and Leaky-ReLU 可选参数:negative_slope:默认为0。对标准的ReLU函数进行变化,如果设置了这个值,那么数据为负数...
阅读(43) 评论(0)

caffe系列之视觉层

视觉层包括Convolution,Pooling, Local Response Normalization(LRN) ,im2col等 Convolution层和Pooling层大家都已经很熟悉,我们重点关注后面两个。 1、Local Response Normalization(LRN)层 此层是对一个输入层的局部区域进行归一化,达到”侧抑制“的效果。可以去搜索AlexNet或GoogLe...
阅读(78) 评论(0)

caffe系列之数据层及参数

1、数据层是模型的最底层,是模型的入口,不仅提供数据输入,也提供数据从Blobs转换成别的格式进行保存输出,通常的数据预处理(去均值,放大缩小,裁剪和镜像等)也在这一层实现。 2、数据来源可以是高效的数据库(levelDB和LMDB),也可以来自内存,甚至可以是磁盘的HDF5 文件或图片格式文件。layer{ name: "cifar" type: "Data" top:...
阅读(58) 评论(0)

caffe的caffe.proto

caffe源码中的caffe.proto在…\src\caffe\proto目录下,在这个文件夹下还有一个.pb.cc和一个.pb.c文件,这两个文件都是由caffe.proto编译出来的。 在caffe.proto中定义了很多结构化数据,包括: BlobProto Datum FillerParameter NetParameter SolverParamter SolverState Laye...
阅读(46) 评论(0)

大数处理问题

http://blog.csdn.net/v_july_v/article/details/7382693: 原理讲解 http://blog.csdn.net/v_JULY_v/article/details/6403777: 程序实现 原则:大而化小,分而治之(hash映射) 解决方法: 1、分而治之/hash映射+hash统计+堆/快速排序/归并排序 2、双层桶划分 3、Bloo...
阅读(45) 评论(0)

Xception_深度可分卷积

转载自:http://blog.csdn.net/wangli0519/article/details/73004985 卷积神经网络中Inception模块是在在普通卷积和深度可分卷积操作之间一种中间状态。基于此,深度可分卷积可理解为最大数量tower的INception模块。根据Inception,提出一种新的的深度卷积神经网络结构,用深度可分卷积替代Inception模块。昵称为Xcepti...
阅读(176) 评论(0)

C++_STL之string用法

1、string之substrstring substr (size_t pos = 0, size_t len = npos) const;产生子串 返回一个新建的初始化为string对象的子串拷贝string对象 从pos开始,跨越len个字符(包括字符串的结尾)。 pos第一个字符的位置被复制为子串。 如果这是等于字符串的长度,该函数返回一个空字符串。 如果这是大于字符串的长度,它会抛出...
阅读(76) 评论(0)

python_变量前加*或者**

当函数要接受元组或者字典参数时,它分别使用和*前缀。在变量前加*,则多余的函数参数会作为一个元组存在args中,如:def func(*ages):func(1,2,3) #args表示(1,2,3)这个元组如果使用**前缀,多余的参数会被认为是字典def func(**args):func(a='1',b='2',c ='3')#args表示{‘a’:'1','b':'2','c':'3'}...
阅读(94) 评论(0)

GAN—生成对抗网络

原理: 假设我们有两个网络:一个生G(Generator),一个判别D(Discriminator)。G是一个生成图片的的网络,它接受一个随机的噪声z,通过这个噪声生成图片,记做G(z)。D是一个判别网络,判断一张图片是不是“真实的”。它的输入参数是x,x代表一张图片的。输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,输出为0,就代表不可能是真实的图片。“对抗”的由来:...
阅读(276) 评论(0)

数字的排序算法—计数排序、桶排序和基数排序

计数排序 当输入元素是n个0到k之间的整数时,他的运行时间是O(n+k),计数排序不是比较排序,它快于任何比较算法。用来计数的数组C的长度取决于排序数组的数据范围,如果数据范围很大,需要大量的数组。但是计数排序可以在基数排序的的算法范围来排序数据范围很大的数组。 步骤: 1、找到数据最小元素和最大元素 2、统计数组中每个值为i的元素出现的个数,存入计数数组第i项 3、对所有的计数累加 4...
阅读(108) 评论(0)

caffe之Protocol Buffers学习

转载自http://blog.csdn.net/langb2014/article/category/5998589/5 1概述 Protocol Buffers是在以后纵轻便高效的结构化数据存储格式,可用于结构化数据串行化,或者说序列化。它很适合做数据存储或者说数据交换格式。提供了多种语言的API,如C++,java,python等。 2 BP作用 BP提供了一种灵活/高效的,自动化序列的...
阅读(109) 评论(0)

ResNet_残差网络

打开深度之门——残差网络产生残差网络的原因:虽然网络越越复杂能够完成的任务越多。深效果越好。但达到一定层数后,accuracy就会下降,这种问题称为degradation,该问题不同于梯度消失/梯度爆炸。梯度消失/梯度爆炸从一开始就阻碍网络收敛,我们通过标准初始化或者中间层归一化已经能够解决。 当深度增加时,准确率达到饱和然后迅速下降,并且这种误差和过拟合无关,在增加层数时也使训练错误率下降厉害,...
阅读(361) 评论(0)

DL语义分割总结

目前看过的论文有FCN,U-net,还有几个经典网络没有看,看论文速度有待提高,赶紧还债,下面是我对几个语义分割网络的简单理解,后期会补充。另,建议关注一个类似知乎的国外精英网站:Qure) 参考来源 :A 2017 Guide to Semantic Segmentation with Deep Learning 在FCN网络在2104年提出后,越来越多的关于图像分割的深度学习网络被提...
阅读(3440) 评论(0)
62条 共4页1 2 3 4 下一页 尾页
    个人资料
    • 访问:17159次
    • 积分:304
    • 等级:
    • 排名:千里之外
    • 原创:6篇
    • 转载:56篇
    • 译文:0篇
    • 评论:0条
    文章分类