关闭

caffe的caffe.proto

caffe源码中的caffe.proto在…\src\caffe\proto目录下,在这个文件夹下还有一个.pb.cc和一个.pb.c文件,这两个文件都是由caffe.proto编译出来的。 在caffe.proto中定义了很多结构化数据,包括: BlobProto Datum FillerParameter NetParameter SolverParamter SolverState Laye...
阅读(9) 评论(0)

大数处理问题

http://blog.csdn.net/v_july_v/article/details/7382693: 原理讲解 http://blog.csdn.net/v_JULY_v/article/details/6403777: 程序实现 原则:大而化小,分而治之(hash映射) 解决方法: 1、分而治之/hash映射+hash统计+堆/快速排序/归并排序 2、双层桶划分 3、Bloo...
阅读(5) 评论(0)

Xception_深度可分卷积

转载自:http://blog.csdn.net/wangli0519/article/details/73004985 卷积神经网络中Inception模块是在在普通卷积和深度可分卷积操作之间一种中间状态。基于此,深度可分卷积可理解为最大数量tower的INception模块。根据Inception,提出一种新的的深度卷积神经网络结构,用深度可分卷积替代Inception模块。昵称为Xcepti...
阅读(100) 评论(0)

C++_STL之string用法

1、string之substrstring substr (size_t pos = 0, size_t len = npos) const;产生子串 返回一个新建的初始化为string对象的子串拷贝string对象 从pos开始,跨越len个字符(包括字符串的结尾)。 pos第一个字符的位置被复制为子串。 如果这是等于字符串的长度,该函数返回一个空字符串。 如果这是大于字符串的长度,它会抛出...
阅读(48) 评论(0)

python_变量前加*或者**

当函数要接受元组或者字典参数时,它分别使用和*前缀。在变量前加*,则多余的函数参数会作为一个元组存在args中,如:def func(*ages):func(1,2,3) #args表示(1,2,3)这个元组如果使用**前缀,多余的参数会被认为是字典def func(**args):func(a='1',b='2',c ='3')#args表示{‘a’:'1','b':'2','c':'3'}...
阅读(55) 评论(0)

GAN—生成对抗网络

原理: 假设我们有两个网络:一个生G(Generator),一个判别D(Discriminator)。G是一个生成图片的的网络,它接受一个随机的噪声z,通过这个噪声生成图片,记做G(z)。D是一个判别网络,判断一张图片是不是“真实的”。它的输入参数是x,x代表一张图片的。输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,输出为0,就代表不可能是真实的图片。“对抗”的由来:...
阅读(181) 评论(0)

数字的排序算法—计数排序、桶排序和基数排序

计数排序 当输入元素是n个0到k之间的整数时,他的运行时间是O(n+k),计数排序不是比较排序,它快于任何比较算法。用来计数的数组C的长度取决于排序数组的数据范围,如果数据范围很大,需要大量的数组。但是计数排序可以在基数排序的的算法范围来排序数据范围很大的数组。 步骤: 1、找到数据最小元素和最大元素 2、统计数组中每个值为i的元素出现的个数,存入计数数组第i项 3、对所有的计数累加 4...
阅读(55) 评论(0)

caffe之Protocol Buffers学习

转载自http://blog.csdn.net/langb2014/article/category/5998589/5 1概述 Protocol Buffers是在以后纵轻便高效的结构化数据存储格式,可用于结构化数据串行化,或者说序列化。它很适合做数据存储或者说数据交换格式。提供了多种语言的API,如C++,java,python等。 2 BP作用 BP提供了一种灵活/高效的,自动化序列的...
阅读(56) 评论(0)

ResNet_残差网络

打开深度之门——残差网络产生残差网络的原因:虽然网络越越复杂能够完成的任务越多。深效果越好。但达到一定层数后,accuracy就会下降,这种问题称为degradation,该问题不同于梯度消失/梯度爆炸。梯度消失/梯度爆炸从一开始就阻碍网络收敛,我们通过标准初始化或者中间层归一化已经能够解决。 当深度增加时,准确率达到饱和然后迅速下降,并且这种误差和过拟合无关,在增加层数时也使训练错误率下降厉害,...
阅读(174) 评论(0)

DL语义分割总结

目前看过的论文有FCN,U-net,还有几个经典网络没有看,看论文速度有待提高,赶紧还债,下面是我对几个语义分割网络的简单理解,后期会补充。另,建议关注一个类似知乎的国外精英网站:Qure) 参考来源 :A 2017 Guide to Semantic Segmentation with Deep Learning 在FCN网络在2104年提出后,越来越多的关于图像分割的深度学习网络被提...
阅读(1434) 评论(0)

使用pycaffe定义网络

1、引入库import caffe from caffe import layers as L from caffe import params as P2、使用pycaffe定义Netn = caffe.NetSpec()3、定义Datalayern.data,n.label = L.Data(batch_size=batch_size,backend = P.data.LMDB,source=l...
阅读(107) 评论(0)

C++静态成员

在C++中,静态成员是属于整个类而不是对象,静态成员变量只存储一份供所有对象共用。所以在对象中都可以共享它。使用静态成员变量可以实现多个对象之间数据共享不会破坏隐藏的原则,保证来安全性还可以节省内存。静态成员的定义或声明要加关键字static,使用时可以以这种形式::: 静态成员是属于整个类而不是某个对象。...
阅读(100) 评论(0)

C++之继承关系

C++继承:公有,私有,保护 继承方式限定了基类成员在派生类中的访问权限,包括 public(公有的)、private(私有的)和 protected(受保护的)。此项是可选项,如果不写,默认为 private(成员变量和成员函数默认也是 private)。共有继承 : 基类的public 和protected成员在派生类中保持不变,private 不可见。 保护继承: 基类的public...
阅读(90) 评论(0)

keras——常用层

常用层对应于core模块,core内部定义了来一系列常用网络层,包括全连接,激活层等。 Dense层keras.layers.core.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None,...
阅读(310) 评论(0)

keras——函数式模型

keras——函数式模型 Keras函数式模型接口是用户定义多输出模型、非循环有向模型或具有共享层的模型等复杂模型的途径。一句话,只要你的模型不是类似VGG一样一条路走到黑的模型,或者你的模型需要多于一个的输出,那么你总应该选择函数式模型。函数式模型是最广泛的一类模型,序贯模型(Sequential)只是它的一种特殊情况。 第一个模型:全连接网络 Sequential当然是...
阅读(925) 评论(0)

python图像处理——图像形变与缩放

图像的形变与缩放,使用的是skimage的transform模块,函数比较多,功能齐全。 1、改变图片尺寸 函数格式为: skimage.transform.resize(image,output_shape) image:需要改变尺寸的图片 output_shape:新的图片尺寸from skimage import transform,data impo...
阅读(187) 评论(0)

python数字图像处理:批处理

有时候需要对一批图片处理。这时候可以调用程序自带的图片集合来处理。 skimage.io.ImageCollection(load_pattern,load_func=None)这个函数是在io模块内,带两个参数,第一个必啊哈四图片数组路径,可以时候一个str字符串。第二个参数是load_func是一个回调函数,我们对图片进行批处理可回调这个函数实现。回调函数默认为imread()即默认这个函数是...
阅读(331) 评论(0)

python图像处理——图像绘制

前面我们已经用到啦图像绘制, io.imshow(img) 这行代码实质是利用matplot包对图片进行绘制,绘制成功后,返回一个matplotlib类型数据。 imshow()格式为 matplotlib.pyplot.imshow(X, cmap=None) X:要绘制的图像或者数组 cmap:颜色图谱,默认绘制为RGB颜色空间 其他颜色图谱: 颜色图谱 描述 autum...
阅读(180) 评论(0)

python图像

一、图像通道from PIL import Image import matplotlib.pyplot as plt img=Image.open('d:/ex.jpg') gray=img.convert('L') plt.figure("beauty") plt.imshow(gray,cmap='gray') plt.axis('off') plt.show()使用convert()函数来进...
阅读(168) 评论(0)

python——图像处理

打开、显示、保存图像要使用python进行各种开发,就必须安装对应的库。这和matlab非常相似,只是matlab里面叫工具箱(toolbox),而python里面叫库或包。安装这些库,一般都是使用pip来安装。使用python进行数字图片处理,还得安装Pillow包。虽然python里面自带一个PIL(python images library), 但这个库现在已经停止更新了,所以使用Pillow...
阅读(172) 评论(0)
52条 共3页1 2 3 下一页 尾页
    个人资料
    • 访问:9944次
    • 积分:214
    • 等级:
    • 排名:千里之外
    • 原创:6篇
    • 转载:46篇
    • 译文:0篇
    • 评论:0条
    文章分类