关闭

Codeforces Round #369 (Div. 2) D. Directed Roads (dfs+组合数学 图论)

标签: dfscodeforces图论组合
270人阅读 评论(0) 收藏 举报
分类:

传送门:D. Directed Roads

描述:

D. Directed Roads
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from1 to n.

There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.

ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.

Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.

Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.

Input

The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i)ai denotes a road going from town i to town ai.

Output

Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.

Examples
input
3
2 3 1
output
6
input
4
2 1 1 1
output
8
input
5
2 4 2 5 3
output
28
Note

Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are , initially. Number the roads 1 to 3 in this order.

The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.

The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.

题意:

  给一张N个点N条有向边的图,边可以逆向。问任意逆向若干条边使得这张图无环的方案数(mod 1e9+7)。

思路:

  因为是N条边所以不会有复杂的环,最多只会有若干组一个环加一条链。

  推算得到,一个大小为k的环对答案的贡献是*(2k-2),而长度为k的链对答案的贡献是2k(链不包括环上的)

  用dfs找出每一组环的大小,最后n减去形成环的总边数得到链的长度,最后计算结果。

代码:
#include <bits/stdc++.h>
#define ll __int64
using  namespace  std;

template<class T> void read(T&num) {
    char CH; bool F=false;
    for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
    for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
    F && (num=-num);
}

const ll mod=1e9+7;
const int N=2e5+10;

int a[N],dep[N],vis[N],sum=0;
ll ans=1;

ll pow_mod(ll x, ll n){
    ll res=1;
    while(n>0){
        if(n&1)res=res*x%mod;
        x=x*x%mod;
        n>>=1;
    }
    return res;
}

void  dfs(int cur,int deep,int fa){
  vis[cur]=fa;
  dep[cur]=deep;
  if(!vis[a[cur]])dfs(a[cur], deep+1, fa);
  else if(vis[a[cur]]==fa){
    ans=ans*(pow_mod(2,dep[cur]-dep[a[cur]]+1)-2+mod)%mod;
    sum+=dep[cur]-dep[a[cur]]+1;
  }
}

int  main(){
  std::ios::sync_with_stdio(false);
  std::cin.tie(0);

  int n;
  read(n);
  for(int i=1; i<=n; i++)read(a[i]);
  for(int i=1; i<=n; i++)if(!vis[i])dfs(i, 0 , i);
  ans=ans*pow_mod(2,n-sum)%mod;
  cout<<ans<<endl;
  return 0;
}




0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:74205次
    • 积分:3288
    • 等级:
    • 排名:第10699名
    • 原创:260篇
    • 转载:8篇
    • 译文:0篇
    • 评论:11条
    博客专栏
    文章分类
    最新评论