Java基础--递归算法

转载 2016年06月01日 17:53:08

概述

程序调用自身的编程技巧称为递归( recursion)。递归做为一种算法在程序设计语言中广泛应用。递归有直接递归间接递归

直接递归:函数在执行过程中调用本身。
间接递归:函数在执行过程中调用其它函数再经过这些函数调用本身。
•表达方式:

递归算法有四个特性:

1必须有可最终达到的终止条件,否则程序将陷入无穷循环;

2)子问题在规模上比原问题小,或更接近终止条件;

3)子问题可通过再次递归调用求解或因满足终止条件而直接求解;

4)子问题的解应能组合为整个问题的解。


下面将从以下几个典型的例子来讲解递归算法:

汉诺塔问题

如图,汉诺塔问题是指有三根杆子A,B,C。C杆上有若干碟子,把所有碟子从C杆上移到B杆上,每次只能移动一个碟子,大的碟子不能叠在小的碟子上面。求最少要移动多少次?

当n=1时:
Move  1  from  A  to  C
当n=2时:
Move  1  from  A  to  B
Move  2  from  A  to  C
Move  1  from  B  to  C

当n=3时:
Move  1  from  A  to  C
Move  2  from  A  to  B
Move  1  from  C  to  B
Move  3  from  A  to  C
Move  1  from  B  to  A
Move  2  from  B  to  C
Move  1  from  A  to  C

源代码

[java] view plain copy
  1. static StringBuffer str = new StringBuffer();  
  2.     /** 
  3.      * //汉诺塔问题 
  4.      * @param n 盘子的个数 
  5.      * @param x 将要移动盘子柱子 
  6.      * @param y 要借用的柱子 
  7.      * @param z 要移动到的柱子 
  8.      * @return 
  9.      */  
  10.     public static String hanio(int n, Object x, Object y, Object z) {  
  11.         //String str ="";  
  12.         if(1 == n)   
  13.             str.append(move(x, n, z) + "\n");  
  14.         else {  
  15.             hanio(n-1, x, z, y);  
  16.             str.append(move(x, n, z) + "\n") ;  
  17.             hanio(n-1, y, x, z);  
  18.         }  
  19.         return str.toString();  
  20.     }  
  21.     private static String move(Object x, int n, Object y) {  
  22.         //System.out.println("Move  " + n + "  from  " + x + "  to  " + y);  
  23.         return "Move  " + n + "  from  " + x + "  to  " + y;  
  24.     }  
  25.       

fibonacci数列

斐波纳契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)

源代码

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. /** 
  2.      * fibonacci数列 
  3.      * @param n 
  4.      * @return 
  5.      */  
  6.     public static long fibonacci(int n) {  
  7.         if((0 == n) || (1 == n)) {  
  8.             return n;  
  9.         }else {  
  10.             return fibonacci(n-1) + fibonacci(n-2);  
  11.         }  
  12.     }  


1加到n累加

用递归实现从1加到n,即1+2+3+4+...+n。

源代码

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. /** 
  2.      * 累加,从1加到n,即1+2+3+4+...+n 
  3.      * @param n 要累加到的数值 
  4.      * @return 累加的结果 
  5.      */  
  6.     public static long total(int n) {  
  7.         if(1 == n) {  
  8.             return n;  
  9.         }else {  
  10.             return total(n-1) + n;  
  11.         }  
  12.     }  


从1到n累积

用递归实现,从1到n累积,即1*2*3*...*n

源代码

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. /** 
  2.      * 从1到n的累积,即1*2*3*...*n 
  3.      * @param n 要累乖到的数值 
  4.      * @return 
  5.      */  
  6.     public static long accumulate(int n) {   
  7.         if(1 == n) {  
  8.             return n;  
  9.         }else {  
  10.             return accumulate(n-1) * n;  
  11.         }  
  12.     }  


求数组中的最大值

用递归算法求数组中的最大值。

源代码

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. /** 
  2.      * 用递归算法求数组中的最大值 
  3.      * @param a 数组 
  4.      * @param low 数组下标 
  5.      * @param heigh 数组上标 
  6.      * @return 
  7.      */  
  8.     public static int Max(int[] a, int low, int heigh) {  
  9.         int max;  
  10.         if(low > heigh-2) {  
  11.             if(a[low] > a[heigh]) max = a[low];  
  12.             else max = a[heigh];  
  13.         }else {  
  14.             int mid = (low + heigh)/2;  
  15.             int max1 = Max(a, low, mid);  
  16.             int max2 = Max(a, mid+1, heigh);  
  17.             max = max1>max2 ? max1 : max2;  
  18.         }  
  19.         return max;  
  20.     }  


数字塔问题

用递归算法求解数字塔问题。
n=1时
1
n=2时
1      
2      2     
 
n=3时
1      
2      2      
3      3      3  
 
n=4时
1      
2      2      
3      3      3      
4      4      4      4
    

源代码

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. /** 
  2.      * 用递归算法求解数字塔问题 
  3.      * @param n 数字塔的行数 
  4.      * @return 数字塔的字符串 
  5.      */  
  6.     public static String tourData(int n) {  
  7.         String str = new String();  
  8.         if(1 == n) {  
  9.             str = rowData(n) + "\n";  
  10.             return str;  
  11.         }  
  12.         else {  
  13.             str = tourData(n-1) + rowData(n) + "\n";  
  14.         }  
  15.         return str;  
  16.     }  
  17.     private static String rowData(int n) {  
  18.         String str = new String();  
  19.         for(int i=0; i<n; i++) {  
  20.             str = str+ n + "      ";  
  21.         }  
  22.         return str;  
  23.     }  
举报

相关文章推荐

JAVA:基础递归算法大杂烩

递归思想:从最外部到达最里部,从最里部开始解决问题,直到解决完最外部的问题。案例1:求ABCDE的所有排序public class Main { public static void main(...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)