SICP 1.11-1.13

原创 2016年08月31日 15:10:05

习题1.11
1.递归算法

(define (f n)
        (if (< n 3)
            n
            (+ (f (- n 1))
               (* 2
                  (f (- n 2)))
               (* 3
                  (f (- n 3))))))

2.迭代算法

(define (f n)
  (define (f-iter n1 n2 n3 step-count)
     (if (< step-count 0)
         n3
         (f-iter n2
                 n3
                 (+ (* 3 n1)
                    (* 2 n2)
                    n3)
                 (- step-count 1))))
  (if (< n 3)
      n
      (f-iter 0 1 2 (- n 3)))) ;此处已经进行了前3次运算,所以减3

习题1.12

(define (pascal row col)
  (cond ((or (< col 1)
             (< row 1))
         0)
        ((or (= col 1)
             (= row col)
             (< row 3))
         1)
        (else (+ (pascal (- row 1) (- col 1))
                 (pascal (- row 1) col)))))

习题1.13

版权声明:

相关文章推荐

编程之美读书笔记之1.11~1.13 一排石头的游戏

1.11 要求是N块石头排成一排,位置固定,A和B每次取任意一块或者相邻两块,最后取光者获胜;使用对称策略,先取者B先取中间的一个(奇数个)或者两个(偶数个),然后取跟A对称的位置相同的个数的石头即可...

SICP Exercise 1.13

原题:这道题让你证明斐波那契 是最接近的整数,其中.其实就是证明。下面用数列解出: (n>1)(递推式)I. 当时,存在满足,整理得 ,把看做一元二次方...

恩布企业 IM iOS 客户端 0.9.7,服务端1.13发布

恩布企业IM,免费企业即时通讯,企业内部通讯平台,iOS苹果开源手机客户端EntboostChat发布0.9.7版本,同时服务更新至1.13版本; iOS苹果手机端主要更新内容: ...

hadoop2.6、hbase0.96、hive1.13环境搭建过程错误总结

1、2011年开始接触了hadoop相关的东西,但那时这些全都弄过,但现在又在弄hadoop2.6相关的东西,感觉以前的好多都已经忘了 2、现在把hadoop2点滴记录下来但好多错误已修复也懒得麻烦复...

Openjudge 1.13 33:实数加法

.

数据结构与算法分析Java版练习1.13

package ch01; /** * 练习1.13 设计一个泛型类Collection,它存储Object对象的集合(在数组中),以及该集合的大小。提供public方法 * isEmpty, ...

编程之美1.13 威佐夫博奕拓展的分析与论证

在上一篇关于《编程之美》中所涉及的博弈论拓展的文章中,我们就尼姆博弈的两种拓展形式展开讨论,并获得了满意的结果。具体内容请详见本人所写博文《编程之美1.12 尼姆博弈拓展的分析与论证》。尼姆博弈是该文...

scikit-learn(工程中用的相对较多的模型介绍):1.13. Feature selection

参考:http://scikit-learn.org/stable/modules/feature_selection.html The classes in the sklearn.fea...

数据结构与算法分析 练习1.13 设计一个类模板Collection

1.14 设计一个类模板Collection,以存储(在一个数组中的)Object 对象的集合,以及该集合的当前大小。提供public 函数isEmpty 、makeEmpty、insert、remo...

编程之美1.13 威佐夫(NIM)博奕(Wythoff Game)涉及的数学定理论证

威佐夫博奕的问题描述如下:有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。问给定两堆物品的数量,谁会赢得这个游戏。         ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)