关闭

图说开源许可协议:GPL、BSD、MIT、Mozilla、Apache和LGPL的区别

首先借用有心人士的一张相当直观清晰的图来划分各种协议:开源许可证GPL、BSD、MIT、Mozilla、Apache和LGPL的区别 以下是上述协议的简单介绍: BSD开源协议 BSD开源协议是一个给于使用者很大自由的协议。基本上使用者可以”为所欲为”,可以自由的使用,修改源代码,也可以将修改后的代码作为开源或者专有软件再发布。 但”为所欲为”的前提当你发布使用了B...
阅读(118) 评论(0)

【规范】流程图的标准画法

1、程序流程图的作用     程序流程图的作用程序流程图的作用程序流程图的作用 程序流程图是人们对解决问题的方法、思路或算法的一种描述。     流程图的优点:                (a)采用简单规范的符号,画法简单;                (b)结构清晰,逻辑性强;                (c)便于描述,容易理解。 2、流程图采用的符...
阅读(2239) 评论(0)

【数据表间关联关系】 一对多、多对一、一对一、多对多

关联映射:一对多/多对一 存在最普遍的映射关系,简单来讲就如球员与球队的关系; 一对多:从球队角度来说一个球队拥有多个球员 即为一对多 多对一:从球员角度来说多个球员属于一个球队 即为多对一 数据表间一对多关系如下图: 关联映射:一对一 一对一关系就如球队与球队所在地址之间的关系,一支球队仅有一个地址,而一个地...
阅读(1794) 评论(0)

【转载】在华为敲代码那些年,我知道的这些事

作为一名前华为程序猿,最近经常有小伙伴问我说为什么要放弃一份看起来高大上的前沿科技工作,我在当面自然都义正言辞地表态说因为我深爱着现在的工作,(大义凛然状)想在这里干一番大事业!其实静下心来想想,不免有一些感触和心里的话,正好借这个机会说出来,以飨读者,也顺便纪念那一段逝去的时光。   优势就是高收入   要说华为公司的一个显著优势,自然就是高收入了。在5月初的一期《财经郎...
阅读(353) 评论(0)

【已解决】虚拟机提示VMware Workstation cannot connect to the virtual machine的问题

今天打开VMware Workstation 11虚拟机时,弹出对话框,提示下述问题: VMware Workstation cannot connect to the virtual machine. Make sure you have rights to run the program, access all directories the program uses, and acce...
阅读(383) 评论(0)

【很详细】JDK安装与环境变量配置

参考文章:http://jingyan.baidu.com/article/6dad5075d1dc40a123e36ea3.html...
阅读(202) 评论(0)

【已解决】如何干干净净的卸载MySQL数据库

解决MySQL Server Instance Configuration Wizard卡住未响应的问题 今天在安装MySQL(5.5.33 win32)后,接着程序自动运行MySQL Server Instance Configuration Wizard(MySQL实例配置向导)程序,一如既往地采用自定义的详细配置,结果在最后一步执行的时候,却一直卡在[Start Service]处...
阅读(1452) 评论(0)

【设置字符集】Win7 64位系统安装MySQL5.5.21图解教程

大家都知道MySQL是一款中、小型关系型数据库管理系统,很具有实用性,对于我们学习很多技术都有帮助,前几天我分别装了SQL Server 2008和Oracle 10g数据库,也用了JDBC去连接他们,都没有出现乱码。昨天看同学用Java连接MySQL数据库的时候,出现了乱码,这是我不知道的,我马上上网去查JDBC连接MySQL的操作,发现在用JDBC方式连接MySQL数据库的时候要传递一个能...
阅读(1793) 评论(0)

【已解决】Linux远程桌面连接-VNC

步骤总结如下: 1. apt-get install xrdp 2. apt-get install vnc4server tightvncserver 3. 安装完毕以后,执行以下命令(该命令的作用是由于安装了 gnome桌面,ubuntu12.04中同时存在unity、GNOME多个桌面管理器,需要启动的时候指定一个,不然即使远程登录验证成功以后,也只是背景,其他什么也没有) 4....
阅读(342) 评论(0)

【已解决】Linux下安装JDK

本机环境:Ubuntu 12.04,Jdk 1.7 第一步:下载jdk-7-linux-i586.tar.gz wget -c http://download.oracle.com/otn-pub/java/jdk/7/jdk-7-linux-i586.tar.gz   (注:如果下载不下来,建议使用迅雷下载,然后拷贝到Linux系统上。) 第二步:解压安装 ...
阅读(212) 评论(0)

【已解决】Linux下安装MySQL数据库

【经验贴】安装环境为:Ubuntu12.04,MySQL5.5.28 在Linux下安装MySQL有三种方式:第一种以rpm的二进制文件分个安装,第二种是自己编译源码后安装,最后一种是以二进制tar.gz文件来安装。 这三种中,由于最后一种是统一的整体文件,个人感觉最简单,故本文将采用此方式来进行安装: 首先到mysql的下载中心上下载最新的tar.gz包...
阅读(743) 评论(0)

【已解决】Navicat 远程连接 Linux服务器上的MySQL数据库

授权法:    在安装mysql的机器上运行:    1、# ./bin/mysql -uroot -p    //这样应该可以进入MySQL服务器    2、mysql> GRANT ALL PRIVILEGES ON *.* TO 'root'@'%'WITH GRANT OPTION    //赋予任何主机访问数据的权限         例如,你想myu...
阅读(2180) 评论(0)

为什么德国人工作这么慢,但效率却很高?

在互联网化发展的今天,所有的进程都在往“快”的方向不断发展。然而,做的快,就真的好吗?如果用半个月的时间推进一个本来需要一个月才能完成的项目,后面却用剩下半个月的时间来不停修正。那么,到底是快了,还是慢了?本文将会告诉你,“慢”的德国人,是怎么“快”起来的… 转眼间来到徐工欧洲采购中心已经三个月了。在适应新工作环境的同时,也在感悟着德国同事的工作风格,小结一下心得,供各位同事交流参考。...
阅读(555) 评论(0)

【已解决】如何判断处理器是大端,或小端?

去年11月份的面试题,今天有空整理出来了,算是总结。 ************************************************************ 大端、小端指对操作数的存放,大端从高到低放,小端从低到高放。X86的intel平台为小端,单片机一般为大端。 举个例子: 操作数0x12345678在内存中的存放,假设从地址0x4000开始放。 大端: 内存地址...
阅读(558) 评论(0)

visio2013画图时两条直线交叉 如何让它不弯曲

visio2013画图时两条直线交叉时交叉处会自动弯曲,这样在画复杂的图时,显示效果会比较乱。如何让它不弯曲呢? 1、在最上面的工具栏中选择“设计” 2、右上角选择“选择连接线” 3、在下拉菜单中,把“显示跨线”前的勾去掉。 4、OK,大功告成!...
阅读(5522) 评论(0)

pdf去除水印方法!【亲测可用】

1、检查pdf是否“加密”,如加密进行第二步,如无则直接进行第三步。 2、下载名为:Advanced PDF Password Recovery 的解密工具,下载地址:http://dl.pconline.com.cn/html_2/1/64/id=931&pn=0&linkPage=1.html 3、安装 Adobe Acrobt Professional 9,选择“文档”-》“水印”-》“...
阅读(217) 评论(0)

如何解决某个端口被谁占用?

我们在启动应用的时候经常发现我们需要使用的端口被别的程序占用,但是我们又不知道是被谁占用,这时候我们需要找出“真凶”,如何做到呢? 1、开始-运行-cmd,进入命令窗口; 2、输入命令: netstat -aon|findstr "8080"  //注释:参看8080端口的应用进程号,即PID 3、继续输入命令: tasklist|findstr "2720"  //注释...
阅读(274) 评论(0)

关于卡尔曼滤波和粒子滤波最直白的解释

卡尔曼滤波本来是控制系统课上学的,当时就没学明白,也蒙混过关了,以为以后也不用再见到它了,可惜没这么容易,后来学计算机视觉和图像处理,发现用它的地方更多了,没办法的时候只好耐心学习和理解了。一直很想把学习的过程记录一下,让大家少走弯路,可惜总也没时间和机会,直到今天。。。 我一直有一个愿望,就是把抽象的理论具体化,用最直白的方式告诉大家--不提一个生涩的词,不写一个数学公式,像讲故事一样先把...
阅读(319) 评论(0)

协方差的意义和计算公式

协方差的意义和计算公式 学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差。首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过。 均值: 标准差: 方差: 很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的, ...
阅读(358) 评论(0)

无偏估计与自由度

不记得当初是怎么学概率论和数理统计的了。最近总是遇到一个小问题,想不通为什么样本方差的无偏估计量是要除以N-1的。 上Wiki找了一下, Estimating variance Suppose X1, ..., Xn are independent and identically distributed random variables with expectation μ an...
阅读(381) 评论(0)
299条 共15页首页 上一页 1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:351550次
    • 积分:5648
    • 等级:
    • 排名:第4859名
    • 原创:234篇
    • 转载:62篇
    • 译文:3篇
    • 评论:40条
    最新评论