关闭

卡尔曼滤波---实例讲解

为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 (为了更明白说明,借助一篇文章中的卡尔曼运算框图,它通过卡尔曼滤波算法将加速度计、电子罗盘测得的数据作为观测值,然后分别与陀螺仪测得的数据进行融合,得到更加精确的姿态...
阅读(1578) 评论(0)

协方差、相关系数---通俗解释

一、协方差的意义 学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差。首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过。 均值: 标准差: 方差: 很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的, 而标准差给我们描述的则是样本集合的各个样本点...
阅读(1547) 评论(0)

AndroidOrientation Sensor(方向传感器),新的替代方法详解(安卓官方提供)

AndroidOrientation Sensor(方向传感器),新的替代方法详解(安卓官方提供)          本文将带大家去解读下安卓官方关于方向传感器数据,提供的新方法。熟悉手机传感器开发的朋友对这段代码一定不会陌生吧。 sm.registerListener(this,              sm.getDefaultSensor(Sensor.TYPE_ORIENT...
阅读(3964) 评论(0)

MATLAB中估算运行时间-tic、toc用法

有时候我们要比较两个方法的运行效率,那么就可以利用tic、toc这两个函数去估算运行时间。使用方法如下:tic for k=1:100 s=sum(k); end toc 运行结果:  Elapsed time is 0.000003 seconds. 是不是很容易呢?用tic,toc把程序围起来就可以了!下面对比一下MATLAB中求逆矩阵两种方法的效率: tic;A=...
阅读(2312) 评论(0)

左手笛卡尔坐标系与左手笛卡尔坐标系区分

统一规则:拇指指向X正方向,食指指向Y正方向,则其余自然指向Z正方向...
阅读(664) 评论(0)

android错误-android.util.AndroidRuntimeException:You cannot combine custom titles with other title

报如下错误:android.util.AndroidRuntimeException: You cannot combinecustom titles with other title features 这个问题主要是由下面语句造成的。        requestWindowFeature(Window.FEATURE_CUSTOM_TITLE);         setContentVi...
阅读(317) 评论(0)

Android系统自带样式(@android:style/)

在AndroidManifest.xml文件的activity中配置   (API 18中Manifest文件中,要有android:theme="@android:style/Theme",否则报错) 1、android:theme="@android:style/Theme" 默认状态,即如果theme这里不填任何属性的时候,默认为Theme(最常用) 2、android:theme...
阅读(452) 评论(0)

RGB颜色表

RGB颜色表 R G B 值   R G B 值   黑色 0 0 0 #000000 黄色 255 255 0 #FFFF00 象牙黑 41 ...
阅读(441) 评论(0)

Android传感器-开发指南

大部分Android平台的设备都带有多个传感器,使你能监视其方位和运动状态的变化。很多设备还有其它类型的传感器,让你能感知周围的环境条件,比如温度、压力、湿度和光线。你可以利用Android的传感器框架访问这些传感器,并获取原始的传感器数据。 传感器框架提供了丰富的类和接口,能帮助你完成很多与传感器有关的工作。比如,你可以用传感器框架来进行: 确定设备上可用的传感器 确定某个传感器的性能,...
阅读(888) 评论(0)

android中11种常见传感器的使用方法

在Android2.3gingerbread系统中,google提供了11种传感器供应用层使用。 01#defineSENSOR_TYPE_ACCELEROMETER 1 //加速度02#define SENSOR_TYPE_MAGNETIC_FIELD 2 //磁力03#defineSENSOR_TYPE_ORIENTATION 3 //方向04#define SENSOR_TYPE_GY...
阅读(1052) 评论(0)

全部希腊字母读音-数学公式中常用

1     Α      α    alpha       a:lf         阿尔法 2      Β      β   beta        bet          贝塔 3      Γ      γ   gamma       ga:m         伽马 4      Δ      δ   delta       delt         德尔塔 5  ...
阅读(546) 评论(0)

典型坐标系-介绍

当你选中一个原点,定义好x,y,z三个坐标轴之后,那么世界位置中的任何一个地方都是可以定义的。但实际情况我们会这样做吗?例如你在布置一间房子的时候,你可能会描述我要把这个桌子放在墙角(2,3)米的地方。你能说我放在地球多少经纬度多少度,多少分,多少秒的地方吗?很显然其他的坐标系都有存在的价值,例如局部坐标系,世界坐标系,物体坐标系,摄像机坐标系,惯性坐标系。在具体的情况下,会有具体的坐标系适合这种...
阅读(654) 评论(0)

动态规划-时间规整算法

DTW(Dynamic Time Warping,动态时间归整)算法,该算法基于动态规划(DP)的思想,解决了发音长短不一的模板匹配问题,是语音识别中出现较早、较为经典的一种算法。...
阅读(1819) 评论(0)

波长,频率,传播距离三者的关系

定理:速度 =波长 * 频率; 在光波里面,波长*频率=一个定值,所以波长越长,频率就会越小. 波长越长,穿透力越强(容易绕过障碍物,发生衍射),反之就弱. 频率越高,分辨率就越高,反之即然. 红外线望远镜(波长长)能在有雾的地方看得比普通的要远好多,就连窗帘布也能穿过. 紫外线照相机(频率高)常用于拍指纹.(用于犯罪侦破) "波长长就传输得远"这句话是错误的.就象“跑得快就跑得远”...
阅读(1858) 评论(0)

好的Java编程习惯

养成良好的java编程习惯 1.        应该在每个程序的开始都加上注释,解释该程序的目的、作者以及程序最后一次被修改的日期和时间。 2.        使用空行和空格来增强程序的可读性。 3.        按照约定,类名标识符中的第一个字母大写,同时将其后每个单词的首字母都大写。java程序员认为这样的标识符通常表示java中的类,所以遵守这个约定,使其可读性增强。 4.    ...
阅读(361) 评论(0)

谱聚类方法-MATLAB

Matlab提供了两种方法进行聚类分析。 一种是利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法; 另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用 linkage函数定义变量之间的连接;(3)用 cophenetic函数评价聚类信息;(4)用cluster函数创建聚类...
阅读(1047) 评论(0)

遗传算法

遗传算法 遗传算法 ( GA , GeneticAlgorithm ) ,也称进化算法 。 遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。   一.进化论知识    作为遗传算法生物背景的介绍,下面内容了解即可:   种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。   ...
阅读(962) 评论(0)

模拟退火算法

模拟退火算法 一. 爬山算法 ( Hill Climbing )         介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。         爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停...
阅读(764) 评论(0)

滤波器概述

滤波器        滤波器(filter)是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的交流电。 滤波器概述   对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器。   其功能就是得到一个特定频率或消除一个特定频率,   利用这个特性可以将通过滤波器的一个方波群或复合噪波,而得到一个特定频率的正弦波。 滤波器类型   巴特沃斯响应(最平坦响应)  ...
阅读(647) 评论(0)

MATLAB中FFT的使用方法

一.调用方法 X=FFT(x); X=FFT(x,N); x=IFFT(X); x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性。 例: N=8; n=0:N-1; xn=[4 3 2 6 7 8 9 0]; Xk=fft(xn) 输出: Xk = 39.0000          -10.7782 + 6....
阅读(680) 评论(0)
27条 共2页1 2 下一页 尾页
    个人资料
    • 访问:353572次
    • 积分:5662
    • 等级:
    • 排名:第4920名
    • 原创:234篇
    • 转载:62篇
    • 译文:3篇
    • 评论:40条
    最新评论