关闭
当前搜索:

【通俗讲解】BP神经网络

参考文章:http://www.jianshu.com/p/3d96dbf3f764 David Rumelhart 和 J.McClelland 于1985年提出了BP网络的误差反向后传BP(Back propagation)学习算法 BP算法基本原理 利用输出后的误差来估计输出层的直接前导层的误差,再用这个误差估计更前一层的误差,如此一层一层的反传下去,就获得了所有其他各层的误差估计。 ...
阅读(140) 评论(0)

【实例讲解】JS中形参、实参可以不一致

function myFunction() { var x=5; return x; } 补充:JS中带返回值的函数,在函数定义时不体现 //正文 1.实参与形参个数可以有偏差,不会因为参数不统一而错误。 例1: ? 1 2 3 4 5 6 functionbox(a,b){  ...
阅读(55) 评论(0)

【实例讲解】DS18B20 ROM码的搜索算法

参考文章:http://www.go-gddq.com/html/s124/2012-11/1077291.htm 当单线总线上挂有多个DS18B20时,系统对总线上器件的数量和每个器件ROM码的识别是通过DS18820的搜索ROM命令与算法配合来实现的。   1.ROM搜索原理      根据单线总线协议,当主机发出搜索ROM命令后,从机应答时从64位ROM码的最低位开始,先发送原码,然...
阅读(67) 评论(0)

【直观对比】奇偶校验 累加和校验 CRC校验

奇偶校验: 所谓通讯过程的校验是指在通讯数据后加上一些附加信息,通过这些附加信息来判断接收到的数据是否和发送出的数据相同。比如说RS232 串行通讯可以设置奇偶校验位,所谓奇偶校验就是在发送的每一个字节后都加上一位,使得每个字节中1的个数为奇数个或偶数个。比如我们要 发送的字节是0x1a,二进制表示为0001 1010。 采用奇校验,则在数据后补上个0,数据变为00...
阅读(77) 评论(0)

【结合实例】信息增益的计算

参考文章:https://www.cnblogs.com/qcloud1001/p/6735352.html 信息增益原理介绍 介绍信息增益之前,首先需要介绍一下熵的概念,这是一个物理学概念,表示“一个系统的混乱程度”。系统的不确定性越高,熵就越大。假设集合中的变量X={x1,x2…xn},它对应在集合的概率分别是P={p1,p2…pn}。那么这个集合的熵表示为:...
阅读(226) 评论(0)

【图解】PCB快速制板,热转印机+腐蚀槽

设备链接地址: https://item.taobao.com/item.htm?spm=a230r.1.14.147.585130d4NXitiv&id=13139188260&ns=1&abbucket=10#detail 制版系统详细使用说明 一、首次使用前的准备工作:   打开两个包装箱,首先找出装箱单与实物对照,检查附件有无短缺。并详细检查腐蚀机、...
阅读(52) 评论(0)

【励志好文】老爸推荐的好文,受益良多!

https://www.ixigua.com/i6489332335530476045/?utm_source=toutiao&utm_medium=feed_stream#mid=75980397497...
阅读(51) 评论(0)

【通俗理解】差模电压和共模电压

参考文章:http://blog.csdn.net/ywf861029/article/details/4633775 我们需要的是整个有意义的“输入信号”,要把两个输入端看作“整体”。         就像初中时平面坐标需要用 x,y 两个数表示,而到了高中或大学就只要用一个“数”v,但这个 v 是由 x,y 两个数构成的“向量”……          而共模、差模正是“输入信号”...
阅读(56) 评论(0)

【图解】共模干扰,差模干扰

参考文章:http://www.sohu.com/a/114902096_463982 共模干扰与差模干扰 共模干扰(Common-mode):两导线上的干扰电流振幅相等,而方向相同者 称为共模干扰。 差模干扰(Differential-mode):两导线上的干扰电流,振幅相等,方向相反 称为差模干扰。 电压电流的变化通过导线传输时有二种形态,我们将此称做“...
阅读(57) 评论(0)

【通俗理解】开漏/开集,线与

参考文章: http://blog.csdn.net/lostand/article/details/70052918 http://www.51hei.com/mcu/3988.html 补充: IC设计成开漏输出方便“线与”,比如说两个或两个以上与非门的输出端连接在同一条导线上,将这些与非门上的数据(状态电平)用同一条导线输送出去。 可以将多个开漏输出的Pin,连...
阅读(48) 评论(0)

改善程序员生活质量的3+10习惯

习惯决定性格,性格决定命运! 饮食、作息、运动! 转自:https://news.cnblogs.com/n/572638/ 一封离职邮件   2017 年的一天,代码伴随着手指极具节奏感地输出在 IDE 上,突然某 Chrome 插件弹出一封邮件提示:“今天是我在 ThoughtWorks 的最后一天”。遇到这种离职邮件,我都会点进去,一来看看是否是自己曾经共事的小伙...
阅读(104) 评论(0)

奇异值分解 VS 特征值分解

未完,待续......
阅读(55) 评论(0)

【总结】分类、聚类的评估指标

1. 分类问题评价指标 1-1. 精确率与召回率 精确率(Precision)指的是模型判为正的所有样本中有多少是真正的正样本;召回率(Recall)指的是所有正样本有多少被模型判为正样本,即召回。感觉精确率是个局部的,召回率是个全局的。 精确率与召回率 1-2. ROC 真正类率(true positive rate ,TPR),刻画的是分类器所识别出的 正实例占所有正实例的比例(正样本预测...
阅读(66) 评论(0)

【图解】ROC曲线

参考文章: http://blog.csdn.net/l18930738887/article/details/46681597 http://blog.csdn.net/u010159842/article/details/49562885 待补充... 曲线及部分应用,如有任何问题或错误欢迎各位留言~~ 一、随机选取用户营销的解释(随机线) ...
阅读(47) 评论(0)

【图解】梯度下降

参考文章:http://blog.csdn.net/zhulf0804/article/details/52250220 如果读者对方向导数和梯度的定义不太了解,请先阅读上篇文章《方向导数与梯度》。   前些时间接触了机器学习,发现梯度下降法是机器学习里比较基础又比较重要的一个求最小值的算法。梯度下降算法过程如下: 1)随机初始值; 2)迭代,直至收敛。表示在处的...
阅读(134) 评论(0)

【图解】机器学习

参考文章:https://my.oschina.net/taogang/blog/1544709 演示代码:https://codepen.io/collection/DPWwaj/ 每当提到机器学习,大家总是被其中的各种各样的算法和方法搞晕,觉得无从下手。确实,机器学习的各种套路确实不少,但是如果掌握了正确的路径和方法,其实还是有迹可循的,这里我推荐SAS的Li Hui的这篇博客,讲...
阅读(86) 评论(0)

Sklearn-train_test_split随机划分训练集和测试集

sklearn.model_selection.train_test_split随机划分训练集和测试集 官网文档:http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html#sklearn.model_selection.train_test_split 一...
阅读(101) 评论(0)

混淆矩阵(Confusion Matrix)分析

Content ConfusionMatrix Example Talbe ofconfusion Preference   Confusion Matrix 在机器学习领域,混淆矩阵(confusion matrix),又称为可能性表格或是错误矩阵。它是一种特定的矩阵用来呈现算法性能的可视化效果,通常是监督学习(非监督学习,通常用匹配矩阵:matchin...
阅读(72) 评论(0)

【基因表达数据处理】从RAW测序数据,到FPKM的过程

FPKM, Fragments Kilobase of exon model per millon mapped reads, which can be used to indicate the expression (abundance) characteristics of genes. Now I will describe operation about obtaining inter...
阅读(237) 评论(0)

【已解决】R语言添加行、列,转置操作

严格来说,矩阵的长度和维度是固定的,因此不能增加或删除行或列。但是可以给矩阵重新赋值,这样可以得到和增加或删除一样的效果。       函数rbind()(代表row bind,按行组合)和函数cbind()(代表column bind,按列组合)可以给矩阵增加行或列。 > one  > z  > cbind( one, z )      one       ...
阅读(317) 评论(0)
317条 共16页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:415766次
    • 积分:6255
    • 等级:
    • 排名:第4458名
    • 原创:246篇
    • 转载:68篇
    • 译文:3篇
    • 评论:42条
    最新评论