(菜鸟回归)毕业设计的探索和研究【1】:有关推荐系统的笔记

原创 2018年01月20日 21:18:54

(研究材料来源于网络,如有雷同,纯属学习)

一、   推荐系统是什么?

根据用户的历史行为、社交关系、兴趣点、所处上下文环境等去判断用户的当前需求/感兴趣的item

二、   为什么需要推荐系统

a)  信息过载,淹没在海量信息中。参考今日头条,虾米音乐和各类电商

b)  对用户而言,可以找到符合个人口味的东西、帮助用户进行决定、发现新鲜点

c)  对供应商而言,提供个性化服务,提高信任度和粘性,增加营收

三、   推荐系统的系统结构

a)  线下部分:数据处理与模型学习,生成模型

b)  线上部分:进行推荐判定,生成推荐结构

四、   推荐系统的评定标准

a)  准确度:

       i.     打分系统,如美团上各类评分

     ii.     Top N推荐:如各类新歌榜,热搜 ***

b)  覆盖率:表示对物品长尾的发掘能力(希望消除马太效应)***

c)  多样性:表示推荐列表中物品两两之间的不相似性  ***

d)  其他,如新颖度、惊喜度、信任度和实时性等

五、   经典算法 **

a)  基于内容的推荐(使用在文本相关产品上):基于用户喜欢的item的属性/内容进行推荐,只需要分析内容本身,不需要考虑其他用户的行为,通过比对item内容的形式进行推荐

b)  步骤:

       i.     对每个要推荐的内容,都需要建立一份资料(常用方法:TF-IDF)

     ii.     需要对用户也建立一份资料

   iii.     计算匹配度(如使用余弦距离公式)

六、   推荐算法的初步

a)  协同过滤 ***

       i.     User-based CF:找到和用户最近的其他用户,找到他们关注的item,根据距离加权打分

     ii.     Item-based CF:根据用户对商品/内容的行为,计算item和item相似度,找到和当前item最近的进行推荐***

   iii.     相似度/距离定义  ***

1.  欧式距离

2.  Jacard相似度

3.  余弦相似度

4.  Pearson相似度

b)  基于物品的协同过滤(步骤如下:)***

       i.     一个用户序列ui,一个item序列pj

     ii.     一个n*m的矩阵v,每个元素vij表示用户对j的打分

   iii.     计算item和item之间的相似度/距离

     iv.     选取Top K推荐或者加权预测得分

c)  基于用户的协同过滤(步骤如下:)***

       i.     一个用户序列ui一个item序列pj

     ii.     一个n*m的矩阵v,每个元素vij表示用户i对j的打分

   iii.     计算相似度/距离

     iv.     预测得分

d)  基于用户的协同过滤的特点:

       i.     适用于用户较少的场合,因为计算用户相似度矩阵代价太大

     ii.     时效性较强,适用于用户个性化兴趣不太明显的领域

   iii.     用户有新的行为时,推荐结果不一定变化

     iv.     很难提供有说服力的推荐解释

e)  基于物品的协同过滤的特点:

       i.     适用于物品数明显小鱼用户数的场合,计算物品相似度矩阵的代价太大

     ii.     物品丰富,用户个性化需求强烈的领域

   iii.     用户有新的行为时,推荐结果一定会有变化

     iv.     可以提供令人信服的推荐理由

f)  协同过滤的优缺点:

       i.     优点:

1.  基于用户行为

2.  结构简单

3.  当用户行为丰富的情况下,效果很好

     ii.     缺点:

1.  需要大量的数据和用户行为支持

2.  与当前上下文环境无关

3.  需要完全相同的物品关联

七、   推荐算法的进阶

a)  隐语义模型 ***

b)  矩阵分解 ***

c)  加bias的隐语义模型 ***

八、   参考库 ***

a)  Java:Apache Mahout(ML library including collaborative filtering)

b)  Python:Crab(Componentsfor recommender systems)

推荐系统读书笔记

推荐系统思路
  • a358463121
  • a358463121
  • 2015年08月13日 20:26
  • 1059

推荐系统实践读书笔记

推荐系统实战 好的推荐系统 个性化推荐系统需要依赖用户的行为数据。几乎所有的推荐系统应用都是由**前台的展示页面、后台的日志系统以及推荐算法系统**3部分构成的。 个性化推荐的两个条件: ...
  • mayuan1210
  • mayuan1210
  • 2018年01月16日 15:31
  • 41

(菜鸟回归)毕业设计的探索和研究【1】:有关推荐系统的笔记

(研究材料来源于网络,如有雷同,纯属学习) 一、   推荐系统是什么? 根据用户的历史行为、社交关系、兴趣点、所处上下文环境等去判断用户的当前需求/感兴趣的item 二、   为什么需要推荐系统...
  • guoqingyuebing
  • guoqingyuebing
  • 2018年01月20日 21:18
  • 32

『 推荐算法』笔记一:什么是推荐系统

推荐系统简介什么是推荐算法为了解决信息过载和用户无明确需求的问题,找到用户感兴趣的物品,于是有了个性化推荐系统。解决信息过载的问题,代表性的解决方案是分类目录和搜索引擎。...
  • shine19930820
  • shine19930820
  • 2017年04月30日 23:32
  • 630

探索式软件测试有感

赤裸裸的现实数据表明哪怕项目的自动化系统做的再好,最终问题中的大多数还是得通过手工测试发现,对于更加敏捷的移动端测试,很有必要丰富测试方法与测试理论,而探索式测试就很适合敏捷式测试。 1. 缺陷预防...
  • hunterno4
  • hunterno4
  • 2013年07月21日 13:53
  • 4336

论文推荐 推荐系统 Recommender System

推荐一些关于推荐系统的论文
  • u013106951
  • u013106951
  • 2017年02月26日 16:06
  • 775

明大推荐系统导论笔记 week 1

明大推荐系统导论笔记 week 11.Introduction to Recommender Systems Understand what a recommender system is Some ...
  • soidnhp
  • soidnhp
  • 2016年03月06日 10:59
  • 914

毕设题目——个性化推荐系统

      导师今天把题目发过来了,个性化推荐系统。听说实验室在这方面已经有很长时间的积累了,今年还有一篇个性化推荐的论文被CIKM录用为长文。希望我能做出点儿对得起人的东西。...
  • cchar
  • cchar
  • 2010年01月12日 19:50
  • 397

推荐系统学习笔记之二 基于内容的推荐系统(CBRS)+Collaborative Filtering 协同过滤

基于内容的推荐系统 (CBRS)首先介绍一下最简单的一个推荐算法模型CBRS。在这个模型中我们用线性回归的基本思路拟合出每个用户对每个电影的评分向量,预测出用户没有评分的电影并进行推荐。假设我们有4个...
  • asd136912
  • asd136912
  • 2017年10月17日 16:39
  • 234

论文笔记] Amazon推荐系统——基于item的协同过滤

关于亚马逊推荐系统的一个概要总结blog。转载推荐。 http://www.xysay.com/amazon-item-to-item-collaborative-filtering-207.html...
  • hojay
  • hojay
  • 2015年10月08日 22:48
  • 275
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:(菜鸟回归)毕业设计的探索和研究【1】:有关推荐系统的笔记
举报原因:
原因补充:

(最多只允许输入30个字)