当前搜索:

Matlab形态学图像处理:二值图像分割 标记连通区域和重心位置 删除连通区域

Matlab形态学图像处理:二值图像分割 标记连通区域和重心位置 删除连通区域    Matlab中可以使用graythresh(Img)函数设置二值化的阈值,再用im2bw转化为二值图像。在Matlab中,可以使用bwlabel()和bwlabeln()函数来标记二值图像的连通区域。需要注意的是:所谓的连通区域标记是指对二值图像中白色像色而言,即值为1的像素进行标记,而黑色像素看作是背景颜色。当然,Matlab中还有个regionprops()函数可以用于统计图像区域的属性,如面积大小,重心位置。...
阅读(2620) 评论(0)

目标检测的图像特征提取之(四)OpenCV中BLOB特征提取与几何形状分类

OpenCV中BLOB特征提取与几何形状分类一:方法二值图像几何形状提取与分离,是机器视觉中重点之一,在CT图像分析与机器人视觉感知等领域应用广泛,OpenCV中提供了一个对二值图像几何特征描述与分析最有效的工具 - SimpleBlobDetector类,使用它可以实现对二值图像几何形状的分离与分析。而它之所以强大是因为整合OpenCV中其它一些API的功能,主要是有三个:自动的图像灰度与二值化...
阅读(2897) 评论(0)

计算机视觉目标检测的框架与过程

个人接触机器视觉的时间不长,对于机器学习在目标检测的大体的框架和过程有了一个初步的了解,不知道对不对,如有错误,请各位大牛不吝指点。 目标的检测大体框架:目标检测分为以下几个步骤:1、训练分类器所需训练样本的创建:       训练样本包括正样本和负样本;其中正例样本是指待检目标样本(例如人脸或汽车等),负样本指其它不包含目标的任意图片(如背景等),所有的样本图片都被归一化为同样的尺寸大小(例如,...
阅读(380) 评论(0)

目标检测的图像特征提取之(三)Haar特征

1、Haar-like特征       Haar-like特征最早是由Papageorgiou等应用于人脸表示,Viola和Jones在此基础上,使用3种类型4种形式的特征。Haar特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩形像素和。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特...
阅读(384) 评论(0)

目标检测的图像特征提取之(二)LBP特征

LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen,和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征; 1、LBP特征的描述       原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值...
阅读(740) 评论(0)

目标检测的图像特征提取之(一)HOG特征

1、HOG特征:       方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2...
阅读(972) 评论(0)

基于匹配的目标识别

如果要在一幅图像中寻找已知物体,最常用且最简单的方法之一就是匹配。在目标识别的方法中,匹配属于基于决策理论方法的识别。匹配方法可以是最小距离分类器,相关匹配。本文code是基于最小距离分类器,基于相关匹配的与此类似。本文涉及到的知识点如下:1、目标识别.2、基于决策理论方法的识别3、匹配(最小距离分类器、相关匹配)4、空间相关(相关匹配涉及)匹配之前,需要先将图像转换为灰度图,函数为rgb2gra...
阅读(410) 评论(0)

基于空间相关的图像模板匹配及MATLAB实现

应用背景:机器的模式识别所要解决的问题,就是用机器代替人去认识图像和找出一幅图像中人们感兴趣的目标物。如何找到目标物即图像的区域呢,这里介绍在空间域使用模板在图像中寻找与模板匹配的区域。基本原理:在空间滤波中,相关是指滤波器模板移过图像并计算每个像素位置的灰度乘积之和的过程。基于相关的图像模板匹配过程类似于滤波过程,设图像f(x,y)的大小为M*N和模板子图像w(x,y)的大小为J*K,则f与w的...
阅读(904) 评论(0)

[置顶] Adaboost算法原理分析和实例+代码(简明易懂)

Adaboost算法原理分析和实例+代码(简明易懂) ,Adaboost算法优点和缺点,Adaboost算法代码,Adaboost基本原理,Adaboost的例子和代码,详细分析Adaboost算法,Adaboost实现过程。 (1)Adaboost提供一种框架,在框架内可以使用各种方法构建子分类器。可以使用简单的弱分类器,不用对特征进行筛选,也不存在过拟合的现象。 (2)Adaboost算法不需要弱分类器的先验知识,最后得到的强分类器的分类精度依赖于所有弱分类器。无论是应用于人造数据还是真...
阅读(7096) 评论(13)

OpenCV Mat类详解和用法

Mat本质上是由两个数据部分组成的类: (包含信息有矩阵的大小,用于存储的方法,矩阵存储的地址等) 的矩阵头和一个指针,指向包含了像素值的矩阵(可根据选择用于存储的方法采用任何维度存储数据)。矩阵头部的大小是恒定的。然而,矩阵本身的大小因图像的不同而不同,通常是较大的数量级。因此,当你在您的程序中传递图像并在有些时候创建图像副本您需要花费很大的代价生成图像矩阵本身,而不是图像的头部。OpenCV 是图像处理库,它包含大量的图像处理函数。若要解决的计算挑战,最终大部分时间你会使用库中的多个函数。由于这一原因图...
阅读(1687) 评论(0)

协方差矩阵和散布矩阵(散度矩阵)的意义

在机器学习模式识别中,经常需要应用到协方差矩阵C和散布矩阵S。如在PCA主成分分析中,需要计算样本的散度矩阵,有的论文是计算协方差矩阵。实质上二者意义差不多,散布矩阵(散度矩阵)前乘以系数1/(n-1)就可以得到协方差矩阵了。在模式识别的教程中,散布矩阵也称为散度矩阵,有的也称为类内离散度矩阵或者类内离差阵,用一个等式关系可表示为:散度矩阵=类内离散度矩阵=类内离差阵=协方差矩阵×(n-1)。样本的协方差矩阵乘以n-1倍即为散布矩阵,n表示样本的个数,散布矩阵的大小由特征维数d决定,是一个为d×d 的半正定...
阅读(842) 评论(0)

[置顶] 协方差矩阵和散布矩阵(散度矩阵)的意义

协方差矩阵和散布矩阵的意义 在机器学习模式识别中,经常需要应用到协方差矩阵C和散布矩阵S。如在PCA主成分分析中,需要计算样本的散度矩阵,有的论文是计算协方差矩阵。实质上二者意义差不多,散布矩阵(散度矩阵)前乘以系数1/(n-1)就可以得到协方差矩阵了。 在模式识别的教程中,散布矩阵也称为散度矩阵,有的也称为类内离散度矩阵或者类内离差阵,用一个等式关系可表示为: 关系:散度矩阵=类内离散度矩阵=类内离差阵=协方差矩阵×(n-1) 样本的协方差矩阵乘以n-1倍即为散布矩阵,n表示样本...
阅读(3602) 评论(0)

[置顶] PCA原理分析和Matlab实现方法(三)

PCA主成分分析原理分析和Matlab实现方法(三) PCA算法主要用于降维,就是将样本数据从高维空间投影到低维空间中,并尽可能的在低维空间中表示原始数据。PCA的几何意义可简单解释为: 0维-PCA:将所有样本信息都投影到一个点,因此无法反应样本之间的差异;要想用一个点来尽可能的表示所有样本数据,则这个点必定是样本的均值。 1维-PCA:相当于将所有样本信息向样本均值的直线投影; 2维-PCA:将样本的平面分布看作椭圆形分布,求出椭圆形的长短轴方向,然后将样本信息投...
阅读(4200) 评论(0)

PCA原理分析和意义(二)

原文链接:http://blog.csdn.net/xl890727/article/details/16898315 在进行图像的特征提取的过程中,提取的特征维数太多经常会导致特征匹配时过于复杂,消耗系统资源,不得不采用特征降维的方法。所谓特征降维,即采用一个低纬度的特征来表示高纬度。特征降维一般有两类方法:特征选择和特征抽取。特征选择即从高纬度的特征中选择其中的一个子集来作为新的特征...
阅读(681) 评论(0)

PCA原理分析和意义(一)

原文链接:http://blog.codinglabs.org/articles/pca-tutorial.html PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲...
阅读(1024) 评论(0)
155条 共11页首页 上一页 1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:451220次
    • 积分:5104
    • 等级:
    • 排名:第6160名
    • 原创:104篇
    • 转载:50篇
    • 译文:1篇
    • 评论:139条
    博客专栏