[置顶] 协方差矩阵和散布矩阵(散度矩阵)的意义

协方差矩阵和散布矩阵的意义 在机器学习模式识别中,经常需要应用到协方差矩阵C和散布矩阵S。如在PCA主成分分析中,需要计算样本的散度矩阵,有的论文是计算协方差矩阵。实质上二者意义差不多,散布矩阵(散度矩阵)前乘以系数1/(n-1)就可以得到协方差矩阵了。 在模式识别的教程中,散布矩阵也称为散度矩阵,有的也称为类内离散度矩阵或者类内离差阵,用一个等式关系可表示为: 关系:散度矩阵=类内离散度矩阵=类内离差阵=协方差矩阵×(n-1) 样本的协方差矩阵乘以n-1倍即为散布矩阵,n表示样本...
阅读(2326) 评论(0)

[置顶] PCA原理分析和Matlab实现方法(三)

PCA主成分分析原理分析和Matlab实现方法(三) PCA算法主要用于降维,就是将样本数据从高维空间投影到低维空间中,并尽可能的在低维空间中表示原始数据。PCA的几何意义可简单解释为: 0维-PCA:将所有样本信息都投影到一个点,因此无法反应样本之间的差异;要想用一个点来尽可能的表示所有样本数据,则这个点必定是样本的均值。 1维-PCA:相当于将所有样本信息向样本均值的直线投影; 2维-PCA:将样本的平面分布看作椭圆形分布,求出椭圆形的长短轴方向,然后将样本信息投...
阅读(2232) 评论(0)

PCA原理分析和意义(二)

原文链接:http://blog.csdn.net/xl890727/article/details/16898315 在进行图像的特征提取的过程中,提取的特征维数太多经常会导致特征匹配时过于复杂,消耗系统资源,不得不采用特征降维的方法。所谓特征降维,即采用一个低纬度的特征来表示高纬度。特征降维一般有两类方法:特征选择和特征抽取。特征选择即从高纬度的特征中选择其中的一个子集来作为新的特征...
阅读(533) 评论(0)

PCA原理分析和意义(一)

原文链接:http://blog.codinglabs.org/articles/pca-tutorial.html PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲...
阅读(744) 评论(0)

解决Warning: NEWFF used in an obsolete way. See help for NEWFF to update calls to the new argument li

解决Warning: NEWFF used in an obsolete way.  【转载请注明出处】http://blog.csdn.net/guyuealian/article/details/53954005      使用Matlab工具箱创建神经网络时,需要用到newff函数,但若使用旧版本的newff函数,会造成下面的警告: > net = newff( minmax(...
阅读(1568) 评论(1)

复旦大学吴立德《数值优化》、《深度学习》和

http://i.youku.com/i/UNjAzMzA4NjQ=/playlists?spm=a2hzp.8253869.0.0 【1】复旦大学吴立德教授讲授的《数值优化》。 使用教材为Nocedal, Jorge, and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006. ...
阅读(1394) 评论(0)

通俗理解卷积神经网络

通俗理解卷积神经网络(cs231n与5月dl班课程笔记) 原文链接:http://blog.csdn.net/v_july_v/article/details/51812459 1 前言     2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“机器学习”更...
阅读(441) 评论(0)

从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换

从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换 本文是边学习边总结和摘抄各参考文献内容而成的,是一篇综述性入门文档,重点在于梳理傅里叶变换到伽柏变换再到小波变换的前因后果,对于一些概念但求多而全,所以可能会有些理解的不准确,后续计划分别再展开学习研究。通过本文可以了解到: 1)傅里叶变换的缺点;2)Gabor变换的概念及优缺点;3)什么是小波;4)...
阅读(1043) 评论(0)

Matlab subs函数的用法

Matlab subs函数的用法 matlab中subs()是符号计算函数,详细用法可以在Matlab的Command Windows输入:help subs。subs()函数表示将符号表达式中的某些符号变量替换为指定的新的变量,常用调用方式为: R = subs(S, new) 利用new的值代替符号表达式S中的默认符号。 R = subs(S) 用由调用函数或Matlab工作空间中获取的值替代了在符号表达式S中的所有当前的变量。 R = subs(S, old, new)...
阅读(4177) 评论(0)

点在直线的投影坐标 n维向量投影坐标 几何投影坐标

点在直线的投影坐标 n维向量投影坐标 几何投影坐标 一、点在直线的投影坐标     如下图所示,直线l1:y=kx+b,直线外有一点P(x0, y0),问:点P在直线上的投影坐标为多少呢?      求点P的投影坐标,即是求过点P(x0, y0)的直线l2垂直于直...
阅读(1599) 评论(0)

协方差矩阵的几何解释

A geometric interpretation of the covariance matrix http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/ 译文:http://demo.netfoucs.com/u010182633/article/details/45937051...
阅读(633) 评论(0)

[置顶] 聚类算法-最大最小距离算法(实例+代码)

最大最小距离算法基本思想 最大最小距离法是模式识别中一种基于试探的类聚算法,它以欧式距离为基础,取尽可能远的对象作为聚类中心。因此可以避免K-means法初值选取时可能出现的聚类种子过于临近的情况,它不仅能智能确定初试聚类种子的个数,而且提高了划分初试数据集的效率。 该算法以欧氏距离为基础,首先初始一个样本对象作为第1个聚类中心,再选择一个与第1个聚类中心最远的样本作为第2个聚类中心,然后确定其他的聚类中心,直到无新的聚类中心产生。最后将样本按最小距离原则归入最近的类。 该算法的聚...
阅读(5338) 评论(2)

[置顶] 张志华教授《机器学习导论》和《统计机器学习》课程讲义

张志华教授《机器学习导论》和《统计机器学习》课程讲义 最近看了上海交大张志华教授的精品课程 《机器学习导论》和《统计机器学习》,觉得讲的很深入,适合学习机器学习和深度学习的研究者深入学习,张教授讲的比较偏向理论,需要一定的数学基础。 至于广大网友最关心的课程讲义和配套教材书籍,鄙人邮件详问过张教授,他说“目前只有学生记录下来的讲义,没有专门的教材”,张教授还好心留下讲义的下载链接:http://bcmi.sjtu.edu.cn/log/courses.html ,这也是他的个人主页,讲义...
阅读(4918) 评论(1)

[置顶] 《机器学习导论》和《统计机器学习》学习资料:张志华教授

张志华教授的两门机器学习公开课是很好的机器学习资源。但在上海交大的公开课视频网站上挂出的教学视频顺序有点乱。对于初学者来说,如果没看对顺序的话,会觉得讲得很乱,从而错过这么优质的资源。事实上板书很完整,有电子版讲义可下载。只是讲义上有个别地方有点笔误,但不影响理解。能用黑板直接推导的老师的逻辑和思路都是很清晰的!...
阅读(2174) 评论(6)

最小错误率贝叶斯决策

原文链接:http://blog.csdn.net/angel_yuaner/article/details/47042817  在一般的模式识别问题中,人们的目标往往是尽量减少分类的错误,追求最小的错误率。根据之前的文章,即求解一种决策规则,使得: minP(e)=∫P(e|x)p(x)dx 这就是最小错误率贝叶斯决策。 在上式中,P(e|x)≥0,p(x)≥0对...
阅读(114) 评论(0)
144条 共10页首页 上一页 1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:361449次
    • 积分:4342
    • 等级:
    • 排名:第7448名
    • 原创:98篇
    • 转载:45篇
    • 译文:1篇
    • 评论:111条
    博客专栏
    最新评论