[置顶] 协方差矩阵和散布矩阵(散度矩阵)的意义

协方差矩阵和散布矩阵的意义 在机器学习模式识别中,经常需要应用到协方差矩阵C和散布矩阵S。如在PCA主成分分析中,需要计算样本的散度矩阵,有的论文是计算协方差矩阵。实质上二者意义差不多,散布矩阵(散度矩阵)前乘以系数1/(n-1)就可以得到协方差矩阵了。 在模式识别的教程中,散布矩阵也称为散度矩阵,有的也称为类内离散度矩阵或者类内离差阵,用一个等式关系可表示为: 关系:散度矩阵=类内离散度矩阵=类内离差阵=协方差矩阵×(n-1) 样本的协方差矩阵乘以n-1倍即为散布矩阵,n表示样本...
阅读(2330) 评论(0)

[置顶] PCA原理分析和Matlab实现方法(三)

PCA主成分分析原理分析和Matlab实现方法(三) PCA算法主要用于降维,就是将样本数据从高维空间投影到低维空间中,并尽可能的在低维空间中表示原始数据。PCA的几何意义可简单解释为: 0维-PCA:将所有样本信息都投影到一个点,因此无法反应样本之间的差异;要想用一个点来尽可能的表示所有样本数据,则这个点必定是样本的均值。 1维-PCA:相当于将所有样本信息向样本均值的直线投影; 2维-PCA:将样本的平面分布看作椭圆形分布,求出椭圆形的长短轴方向,然后将样本信息投...
阅读(2241) 评论(0)

PCA原理分析和意义(二)

原文链接:http://blog.csdn.net/xl890727/article/details/16898315 在进行图像的特征提取的过程中,提取的特征维数太多经常会导致特征匹配时过于复杂,消耗系统资源,不得不采用特征降维的方法。所谓特征降维,即采用一个低纬度的特征来表示高纬度。特征降维一般有两类方法:特征选择和特征抽取。特征选择即从高纬度的特征中选择其中的一个子集来作为新的特征...
阅读(534) 评论(0)

PCA原理分析和意义(一)

原文链接:http://blog.codinglabs.org/articles/pca-tutorial.html PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲...
阅读(746) 评论(0)

解决Warning: NEWFF used in an obsolete way. See help for NEWFF to update calls to the new argument li

解决Warning: NEWFF used in an obsolete way.  【转载请注明出处】http://blog.csdn.net/guyuealian/article/details/53954005      使用Matlab工具箱创建神经网络时,需要用到newff函数,但若使用旧版本的newff函数,会造成下面的警告: > net = newff( minmax(...
阅读(1572) 评论(1)

复旦大学吴立德《数值优化》、《深度学习》和

http://i.youku.com/i/UNjAzMzA4NjQ=/playlists?spm=a2hzp.8253869.0.0 【1】复旦大学吴立德教授讲授的《数值优化》。 使用教材为Nocedal, Jorge, and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006. ...
阅读(1395) 评论(0)

通俗理解卷积神经网络

通俗理解卷积神经网络(cs231n与5月dl班课程笔记) 原文链接:http://blog.csdn.net/v_july_v/article/details/51812459 1 前言     2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“机器学习”更...
阅读(441) 评论(0)

从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换

从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换 本文是边学习边总结和摘抄各参考文献内容而成的,是一篇综述性入门文档,重点在于梳理傅里叶变换到伽柏变换再到小波变换的前因后果,对于一些概念但求多而全,所以可能会有些理解的不准确,后续计划分别再展开学习研究。通过本文可以了解到: 1)傅里叶变换的缺点;2)Gabor变换的概念及优缺点;3)什么是小波;4)...
阅读(1043) 评论(0)
    个人资料
    • 访问:361814次
    • 积分:4345
    • 等级:
    • 排名:第7448名
    • 原创:98篇
    • 转载:45篇
    • 译文:1篇
    • 评论:111条
    博客专栏
    最新评论