关闭

poj1273解题报告(最大流 EK算法)

181人阅读 评论(0) 收藏 举报
分类:

题目大意:现在有m个池塘(1m开始编号,1为源点,m为汇点),n条水渠,给出这n条水渠所连接的池塘和所能流过的水量,求水渠中所能流过的水的最大容量.

解题思路:最大流的经典题目,套模板即可完成,直接用的LRJ的模板

#include<iostream>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=201;
const int INF=99999999;
int n,m,sum,s,t;//s,t为始点和终点
int flow[N][N],cap[N][N],a[N],p[N];
//分别为:flow[u][v]为<u,v>流量、cap[u][v]为<u,v>容量、a[i]表示源点s到节点i的路径上的最小残留量、p[i]记录i的前驱
void Edmonds_Karp()
{
int i,u,v;
queue<int>q;//队列,用bfs找增广路
while(1)
{
   memset(a,0,sizeof(a));//每找一次,初始化一次
   a[s]=INF;
   q.push(s);//源点入队
   while(!q.empty())
   {
    u=q.front();
    q.pop();
    for(v=1;v<=m;v++)
    {
     if(!a[v]&&flow[u][v]<cap[u][v])
     {
      p[v]=u;
      q.push(v);
      a[v]=min(a[u],cap[u][v]-flow[u][v]);//s-v路径上的最小残量
     }
    }
   }
   if(a[m]==0)//找不到增广路,则当前流已经是最大流
    break;
   sum+=a[m];//流加上
   for(i=m;i!=s;i=p[i])// //从汇点顺着这条增广路往回走
   {
    flow[p[i]][i]+=a[m];//更新正向流量
    flow[i][p[i]]-=a[m];//更新反向流量
   }
}
printf("%d\n",sum);
}
int main()
{
//freopen("in.txt","r",stdin);
int v,u,w;
    while(scanf("%d%d",&n,&m)!=EOF)//n是边数,m是点数
{
   s=1;//从1开始
   t=m;//m为汇点
   sum=0;//记录最大流量
   memset(flow,0,sizeof(flow));//初始化
   memset(cap,0,sizeof(cap));
   while(n--)
   {
    scanf("%d%d%d",&u,&v,&w);
    cap[u][v]+=w;//注意图中可能出现相同的边
   }
   Edmonds_Karp();
}
return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:28066次
    • 积分:1244
    • 等级:
    • 排名:千里之外
    • 原创:99篇
    • 转载:3篇
    • 译文:0篇
    • 评论:3条
    最新评论