图论算法-求(有向)图中任意两点间所有路径

翻译 2016年08月30日 13:44:28

1建图:

     图类中包括如下信息:顶点集合,邻接矩阵。

     节点类中包括如下信息:是否被访问过,节点的名称,从这个节点访问到下一个节点的集合


          


2 算法思路

  A 将始点设置为已访问,将其入栈

  B 查看栈顶节点V在图中,有没有可以到达、且没有入栈、且没有从这个节点V出发访问过的节点

  C 如果有,则将找到的这个节点入栈

  D 如果没有,则将节点V访问到下一个节点的集合中每个元素赋值为零,V出栈

  E 当栈顶元素为终点时,设置终点没有被访问过,打印栈中元素,弹出栈顶节点

  F 重复执行B – E,直到栈中元素为空


package util;

public class Graph {

	private Vertex vertexList[]; // list of vertices
	private int adjMat[][]; // adjacency matrix

	private int nVerts;
	private static int MAX_VERTS = 7; // n个点

	int i = 0;
	int j = 0;

	public Vertex[] getVertexList() {
		return vertexList;
	}

	public int[][] getAdjMat() {
		return adjMat;
	}

	public int getN() {
		return MAX_VERTS;
	}

	public Graph(int index) {
		adjMat = new int[MAX_VERTS][MAX_VERTS]; // 邻接矩阵
		vertexList = new Vertex[MAX_VERTS]; // 顶点数组
		nVerts = 0;

		for (i = 0; i < MAX_VERTS; i++) {
			for (j = 0; j < MAX_VERTS; j++) {
				adjMat[i][j] = 0;
			}
		}

		addVertex('A');
		addVertex('B');
		addVertex('C');
		addVertex('D');
		addVertex('E');
		addVertex('F');
		addVertex('G');

		addEdge(0, 1);
		addEdge(0, 2);
		addEdge(1, 4);
		addEdge(2, 0);
		addEdge(2, 5);
		addEdge(3, 0);
		addEdge(3, 2);
		addEdge(3, 3);
		addEdge(4, 1);
		addEdge(4, 2);
		addEdge(5, 6);
		addEdge(6, 3);

		switch (index) {
		case 0:
			break;
		case 1:
			delEdge(4, 2);
			break;
		default:
			break;
		}
	}

	private void delEdge(int start, int end) {
		adjMat[start][end] = 0;
	}

	private void addEdge(int start, int end) {// 有向图,添加边
		adjMat[start][end] = 1;
		// adjMat[end][start] = 1;
	}

	public void addVertex(char lab) {
		vertexList[nVerts++] = new Vertex(lab);// 添加点
	}

	public char displayVertex(int i) {
		return vertexList[i].getLabel();
	}

	public boolean displayVertexVisited(int i) {
		return vertexList[i].WasVisited();
	}

	public void printGraph() {
		for (i = 0; i < MAX_VERTS; i++) {
			System.out.print("第" + displayVertex(i) + "个节点:" + " ");

			for (j = 0; j < MAX_VERTS; j++) {
				System.out.print(displayVertex(i) + "-" + displayVertex(j)
						+ ":" + adjMat[i][j] + " ");
			}
			System.out.println();
		}

	}

}

import java.util.ArrayList;

public class Vertex {

	boolean wasVisited; // 是否遍历过
	public char label; // 节点名称
	ArrayList<Integer> allVisitedList;// 节点已访问过的顶点

	public void setAllVisitedList(ArrayList<Integer> allVisitedList) {
		this.allVisitedList = allVisitedList;
	}

	public ArrayList<Integer> getAllVisitedList() {
		return allVisitedList;
	}

	public boolean WasVisited() {
		return wasVisited;
	}

	public void setWasVisited(boolean wasVisited) {
		this.wasVisited = wasVisited;
	}

	public char getLabel() {
		return label;
	}

	public void setLabel(char label) {
		this.label = label;
	}

	public Vertex(char lab) // constructor
	{
		label = lab;
		wasVisited = false;
	}

	public void setVisited(int j) {
		allVisitedList.set(j, 1);

	}

}


import util.Graph;

public class Main {

	public static void main(String[] args) {
        //第几张图,有两张(0,1),起点序号(0-6),终点序号(0-6)
		AF operation = new AF(new Graph(0), 3, 6);
		operation.getResult();

	}
}

源码下载:http://download.csdn.net/detail/ha000/9616787

隐马尔可夫模型 (Hidden Markov Model,HMM)理解

隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语音识别,自然语言处理以及生物信息等领域体现了很大的价...

动态规划解——有向图中的最长路径

转载 :http://www.cnblogs.com/yanlingyin/archive/2011/11/12/2246716.html 动态规划博大精深,想完全掌握是很难的,不过...

搜索图中任意两点间的所有路径

介绍搜索图中两顶点之间的所有路径的方法

我对弗洛伊德算法的理解(求图中任意两点之间最短距离)

我对弗洛伊德算法的理解(求图中任意两点之间最短距离) 基本过程: for k = 1:n for i = 1:n for j = 1:n ...

Dijkstra [迪杰斯特拉]算法思路(求单点到其他每个点的各个最短路径)Floyd算法:任意两点间最短距离

先给出一个无向图 用Dijkstra算法(迪杰斯特拉算法)找出以A为起点的单源最短路径步骤如下 应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。 Di...
  • lingzhm
  • lingzhm
  • 2015年03月30日 19:50
  • 3826

软件测试作业 图中任意两点的最短路径

软件测试相关: #include using namespace std; #define INFTY 65535 //ûÓбßÏàÁ¬ÓÃINFTY±íʾ //´¢´æͼµÄÁÚ½Ó¾...
  • qustdjx
  • qustdjx
  • 2013年12月17日 20:27
  • 1239
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:图论算法-求(有向)图中任意两点间所有路径
举报原因:
原因补充:

(最多只允许输入30个字)