子字符串的定义和子序列的定义类似,但要求是连续分布在其他字符串中。比如输入两个字符串BDCABA和ABCBDAB的最长公共字符串有BD和AB,它们的长度都是2。
最长公共子字符串共有两种解决方法,下面具体说说我的思路
方法一:
Longest Common Substring和Longest Common Subsequence是有区别的
X = <a, b, c, f, b, c>
Y = <a, b, f, c, a, b>
X和Y的Longest Common Sequence为<a, b, c, b>,长度为4
X和Y的Longest Common Substring为 <a, b>长度为2
其实Substring问题是Subsequence问题的特殊情况,也是要找两个递增的下标序列
<i1, i2, ...ik> 和 <j1, j2, ..., jk>使
xi1 == yj1
xi2 == yj2
......
xik == yjk
与Subsequence问题不同的是,Substring问题不光要求下标序列是递增的,还要求每次
递增的增量为1, 即两个下标序列为:
<i, i+1, i+2, ..., i+k-1> 和 <j, j+1, j+2, ..., j+k-1>
类比Subquence问题的动态规划解法,Substring也可以用动态规划解决,令
c[i][j]表示Xi和Yi的最大Substring的长度,比如
X = <y, e, d, f>
Y = <y, e, k, f>
c[1][1] = 1
c[2][2] = 2
c[3][3] = 0
c[4][4] = 1
动态转移方程为: