python中的装饰器——@

本文深入探讨了Python中装饰器的概念及其应用,通过几个关键链接详细解释了装饰器的工作原理及其实现方式,适合希望深入了解Python高级特性的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对装饰器本来就一知半解的,今天终于弄清楚了,python中的装饰器是对装饰者模式的很好运用,简化到骨子里了。


python中为什么需要装饰器,看这里:http://www.cnblogs.com/huxi/archive/2011/03/01/1967600.html


python原理解释,看这里:http://www.openstack.org.cn/bbs/forum.php?mod=viewthread&tid=502&extra=page%3D1


在来一个问题:http://www.openstack.org.cn/bbs/forum.php?mod=viewthread&tid=888&extra=page%3D1


明白这个问题了,装饰器就弄明白了。





### Python 中 `@` 装饰器的用法 装饰器是一种用于修改函数行为的强大工具。通过使用装饰器,可以在不改变原函数代码的情况下为其增加额外功能[^3]。 #### 基本概念 装饰器本质上是一个接受函数作为参数并返回新函数的对象。通常情况下,装饰器会定义一个内部函数来包裹原始函数的行为,并最终返回这个内部函数。这种机制允许开发者在调用目标函数前后执行特定操作[^4]。 #### 使用 `@` 语法糖简化装饰器应用 Python 提供了一种简洁的方式——即利用 `@decorator_name` 的形式放在待修饰函数之前,从而实现自动化的装饰过程。这种方式不仅提高了可读性还减少了冗余代码量。 #### 实际案例分析 下面给出一段具体的例子展示如何创建及运用简单的日志记录装饰器: ```python def log_decorator(func): def wrapper(*args, **kwargs): print(f"Calling function '{func.__name__}' with arguments {args} and keyword arguments {kwargs}") result = func(*args, **kwargs) print(f"Function '{func.__name__}' returned value: {result}") return result return wrapper @log_decorator # 应用了名为 'log_decorator' 的装饰器 def multiply(a, b): """Multiply two numbers.""" return a * b multiply(6, 7) ``` 上述代码片段展示了当调用 `multiply()` 函数时,实际运行的是经过 `log_decorator` 处理后的版本。这使得每次调用该乘法运算都会打印输入输出信息到控制台中。 #### 更进一步的应用场景 除了基本的日志记录之外,装饰器还可以用来做权限验证、性能计时等功能扩展。例如,在Web开发框架Flask里就广泛采用了类似的模式来进行路由注册和请求处理前后的预/后置动作管理[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值