【论文阅读】Convolutional Sequence to Sequence Learning (未完待续)

论文github地址   值得阅读与一试:  https://github.com/facebookresearch/fairseq

以往谈到sequence  to sequence,往往会下意识地想到 RNN, 但这篇文章告诉我们,CNN 不仅可以做 sequence to sequence,不仅在大规模机器翻译的训练数据上结果比 RNN 要好,而且模型更加易于优化与加速。

好,下面开始谈 用 CNN 如何做 Sequence to Sequence:

模型架构如下:


首先 encode 层: 输入是词的嵌入Rf,先要做一层线性变换Rd,经过多层卷积之后(中间要做padding保证每次卷积过后的大小不会变化),再经过gated linear units (GLU)做一次非线性变换,得到输出仍是 Rd。 



词的嵌入与位置的嵌入,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值