【论文阅读】Convolutional Sequence to Sequence Learning (未完待续)

本文介绍了一种使用CNN进行序列到序列处理的方法,并详细解释了其模型架构。相较于传统的RNN,该方法在大规模机器翻译任务中表现更优且更易优化。

论文github地址   值得阅读与一试:  https://github.com/facebookresearch/fairseq

以往谈到sequence  to sequence,往往会下意识地想到 RNN, 但这篇文章告诉我们,CNN 不仅可以做 sequence to sequence,不仅在大规模机器翻译的训练数据上结果比 RNN 要好,而且模型更加易于优化与加速。

好,下面开始谈 用 CNN 如何做 Sequence to Sequence:

模型架构如下:


首先 encode 层: 输入是词的嵌入Rf,先要做一层线性变换Rd,经过多层卷积之后(中间要做padding保证每次卷积过后的大小不会变化),再经过gated linear units (GLU)做一次非线性变换,得到输出仍是 Rd。 



词的嵌入与位置的嵌入,

### 关于图像去模糊的研究 图像去模糊是一个重要的研究领域,旨在通过算法处理使模糊的图像变得清晰。这一领域的研究通常涉及多种技术和模型架构,例如残差学习[^1]、高级卷积以及特定的数据集准备策略[^5]。 #### Learning to Deblur 的背景 Learning to Deblur 是一项针对图像去模糊的技术研究,其核心目标是利用深度学习方法来解决图像中的运动模糊或光学模糊问题。该技术依赖于复杂的神经网络结构,如递归学习和紧密连接,并通过大规模数据集训练实现高效的去模糊效果。 具体而言,早期的传统去模糊方法主要集中在数学建模上,而现代方法则更多地采用深度学习框架。例如,在 BMVC2015 上提出的 Convolutional Neural Networks for Direct Text Deblurring 方法专门用于文本任务的去模糊处理[^3]。此外,DRBNet 作为一个基于 PyTorch 的开源项目,展示了如何利用光场生成和真实散焦图像来进行有效的图像去模糊操作[^4]。 #### 学术资源获取方式 对于具体的论文下载需求,可以通过以下途径找到相关资料: 1. **官方出版平台**:许多顶级会议(如 CVPR、ICCV 和 ECCV)会发布论文的正式版本,可以在这些会议官网或者 IEEE Xplore 数据库中搜索。 2. **预印本服务器**:arXiv.org 提供了大量的学术文章预印本,可以尝试在此平台上检索关键词 "Learning to Deblur"。 3. **机构网站**:部分作者会在个人主页或所属实验室页面分享他们的研究成果及其 PDF 文件。 如果需要更详细的解读,建议关注以下几个方面: - 模型架构的设计原理; - 实验设置与评估指标的选择依据; - 结果对比分析及局限性的讨论。 以下是 DRBNet 技术的一个简单代码示例展示如何加载预训练权重并执行推理过程: ```python import torch from drbnet import DRBNet # 初始化模型 model = DRBNet() # 加载预训练权重 checkpoint = torch.load('path_to_pretrained_weights.pth') model.load_state_dict(checkpoint['state_dict']) # 输入张量 (假设大小为 HxWxC) input_tensor = torch.randn(1, 3, 256, 256) # 执行前向传播 output = model(input_tensor) print(output.shape) # 输出形状应匹配输入分辨率 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值