【论文阅读】Convolutional Sequence to Sequence Learning (未完待续)

本文介绍了一种使用CNN进行序列到序列处理的方法,并详细解释了其模型架构。相较于传统的RNN,该方法在大规模机器翻译任务中表现更优且更易优化。

论文github地址   值得阅读与一试:  https://github.com/facebookresearch/fairseq

以往谈到sequence  to sequence,往往会下意识地想到 RNN, 但这篇文章告诉我们,CNN 不仅可以做 sequence to sequence,不仅在大规模机器翻译的训练数据上结果比 RNN 要好,而且模型更加易于优化与加速。

好,下面开始谈 用 CNN 如何做 Sequence to Sequence:

模型架构如下:


首先 encode 层: 输入是词的嵌入Rf,先要做一层线性变换Rd,经过多层卷积之后(中间要做padding保证每次卷积过后的大小不会变化),再经过gated linear units (GLU)做一次非线性变换,得到输出仍是 Rd。 



词的嵌入与位置的嵌入,

### 序列到点(Sequence-to-Point)概念 序列到点模型是一种特定类型的机器学习框架,用于处理输入为一系列数据点而输出仅为单一点的情况。这种模式特别适用于那些需要从较长的时间序列或其他形式的数据集中抽取关键信息的任务[^1]。 在自然语言处理领域内,这类技术可用于文档分类、情感分析或是任何其他涉及将一段连续文本转换成离散标签的应用场景中。不同于传统的Seq2Seq架构——后者通常会生成另一个完整的序列作为输出结果;相反地,在这里目标仅限于预测单一值或类别标记[^5]。 ### 实现方式 为了实现这一功能,研究者们提出了多种不同的算法和技术手段: #### 基于神经网络的方法 一种常见的做法是利用深层前馈神经网络(Deep Feedforward Neural Network),其中每一层都由多个全连接单元组成,并且随着层数加深逐渐减少节点数量直到最后一层只保留一个输出节点用来表示最终决策得分或者概率分布[^2]。 另一种更为先进的解决方案则是采用卷积神经网络(Convolutional Neural Networks, CNNs)来进行特征提取工作。相比于传统RNN/LSTM等循环结构而言,CNN不仅能够更好地捕捉局部上下文关联性而且还能显著提高运算效率支持大规模并行计算从而加速整个训练过程[^4]。 ```python import torch.nn as nn class SeqToPointCNN(nn.Module): def __init__(self): super(SeqToPointCNN, self).__init__() self.conv1d = nn.Conv1d(in_channels=..., out_channels=..., kernel_size=...) self.fc = nn.Linear(...) def forward(self, x): x = F.relu(self.conv1d(x)) x = F.max_pool1d(x, ...) x = x.view(-1, ...) # Flatten tensor before passing it through fully connected layer. output = self.fc(x) return output ``` 此代码片段展示了如何构建一个简单的基于一维卷积的操作来完成从序列向量映射至单独数值的过程。具体参数需根据实际应用场景调整设置。 ### 应用实例 非侵入式负荷监测是一个很好的例子,它涉及到从未知设备消耗电力的历史记录里识别出各个电器的工作状态变化时刻点。通过部署上述提到的技术方案之一即可有效地解决此类问题而不必预先定义复杂的规则集或者是手工挑选特征变量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值