RmbChangdx

转载 2013年12月05日 00:39:38
function RmbChangdx(mmje: Double): String;

const
  s1: String = '零壹贰叁肆伍陆柒捌玖';
  s2: String = '分角元拾佰仟万拾佰仟亿拾佰仟万';

var
  s, dx: String;
  i, Len: Integer;

function StrTran(const s, s1, s2: String): String;
begin
  Result := StringReplace(s, s1, s2, [rfReplaceAll]);
end;

begin
  if mmje < 0 then
  begin
    dx := '负';
    mmje := -mmje;
  end;
  s := Format('%.0f', [mmje * 100]);
  Len := Length(s);
  for i := 1 to Len do
    dx := dx + Copy(s1, (Ord(s[i]) - Ord('0')) * 2 + 1, 2) +
      Copy(s2, (Len - i) * 2 + 1, 2);
  dx := StrTran(StrTran(StrTran(StrTran(StrTran(dx, '零仟', '零'), '零佰', '零'),
    '零拾', '零'), '零角', '零'), '零分', '整');
  dx := StrTran(StrTran(StrTran(StrTran(StrTran(dx, '零零', '零'), '零零', '零'),
    '零亿', '亿'), '零万', '万'), '零元', '元');
  if dx = '整' then
    Result := '零元整'
  else
    Result := StrTran(StrTran(dx, '亿万', '亿'), '零整', '整');
end;

相关文章推荐

内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)