第13周项目1--分数类中的运算符重载

原创 2016年05月30日 14:59:25

代码:

/*
*Copyright (c) 2016, 烟台大学计算机与控制工程学院
*All rights reserved.
*文件名称:main.cpp;
*作    者:岳成艳2016年5月30号;
*版 本 号:vc++6.0;
*
*问题描述:实现分数类中的运算符重载,在分数类中可以完成加减乘除。
*程序输入:略;
*程序输出:略;
*/
#include <iostream>
#include <Cmath>
using namespace std;
class CFraction
{
private:
    int nume;  // 分子
    int deno;  // 分母
public:
    CFraction(int nu=0,int de=1):nume(nu),deno(de) {}
    void simplify();
    //输入输出的重载
    friend istream &operator>>(istream &in,CFraction &x);
    friend ostream &operator<<(ostream &out,CFraction x);
    CFraction operator+(const CFraction &c);  //两个分数相加,结果要化简
    CFraction operator-(const CFraction &c);  //两个分数相减,结果要化简
    CFraction operator*(const CFraction &c);  //两个分数相乘,结果要化简
    CFraction operator/(const CFraction &c);  //两个分数相除,结果要化简
    CFraction operator+();  //取正一目运算
    CFraction operator-();  //取反一目运算
    CFraction operator~();  //取倒数一目运算
    bool operator>(const CFraction &c);
    bool operator<(const CFraction &c);
    bool operator==(const CFraction &c);
    bool operator!=(const CFraction &c);
    bool operator>=(const CFraction &c);
    bool operator<=(const CFraction &c);
};
void CFraction::simplify()  // 分数化简
{
    int m,n,r;
    n=fabs(deno);
    m=fabs(nume);
    while(r=m%n)  // 求m,n的最大公约数
    {
        m=n;
        n=r;
    }
    deno/=n;     // 化简
    nume/=n;
    if (deno<0)  // 若分母<0,将分母转化为正数
    {
        deno=-deno;
        nume=-nume;
    }
}
//重新输入运算符>>
istream &operator>>(istream &in,CFraction &x) 
{
    char ch;
    while(1)
    {
        cin>>x.nume>>ch>>x.deno;
        if (x.deno==0)
            cerr<<"分母为0, 请重新输入\n";
        else if(ch!='/')
            cerr<<"格式错误(形如m/n)! 请重新输入\n";
        else
            break;
    }
    return cin;
}
//重新输出运算符<<
ostream &operator<<(ostream &out,CFraction x)  
{
    cout<<x.nume<<'/'<<x.deno;
    return cout;
}
CFraction CFraction::operator+(const CFraction &c) // 分数相加
{
    CFraction t;
    t.nume=nume*c.deno+c.nume*deno;
    t.deno=deno*c.deno;
    t.simplify();
    return t;
}
CFraction CFraction:: operator-(const CFraction &c) // 分数相减
{
    CFraction t;
    t.nume=nume*c.deno-c.nume*deno;
    t.deno=deno*c.deno;
    t.simplify();
    return t;
}
CFraction CFraction:: operator*(const CFraction &c) // 分数相乘
{
    CFraction t;
    t.nume=nume*c.nume;
    t.deno=deno*c.deno;
    t.simplify();
    return t;
}
CFraction CFraction:: operator/(const CFraction &c) // 分数相除
{
    CFraction t;
    if (!c.nume) return *this;   //除法无效(除数为)时,这种情况需要考虑,但这种处理仍不算合理
    t.nume=nume*c.deno;
    t.deno=deno*c.nume;
    t.simplify();
    return t;
}
CFraction CFraction:: operator+() // 分数取正号
{
    return *this;
}
CFraction CFraction:: operator-() // 分数取负号
{
    CFraction x;
    x.nume=-nume;
    x.deno=deno;
    return x;
}
CFraction CFraction:: operator~() // 分数取倒数
{
    CFraction x;
    x.nume=deno;
    x.deno=nume;   //未对原分子为0的情况进行处理
    if(x.deno<0)   //保证负分数的负号在分子上
    {
        x.deno=-x.deno;
        x.nume=-x.nume;
    }
    return x;
}
bool CFraction::operator>(const CFraction &c) // 分数比较大小
{
    int this_nume,c_nume,common_deno;
    this_nume=nume*c.deno;        // 计算分数通分后的分子,同分母为deno*c.deno
    c_nume=c.nume*deno;
    common_deno=deno*c.deno;
    if ((this_nume-c_nume)*common_deno>0) return true;
    return false;
}
bool CFraction::operator<(const CFraction &c) // 分数比较大小
{
    int this_nume,c_nume,common_deno;
    this_nume=nume*c.deno;
    c_nume=c.nume*deno;
    common_deno=deno*c.deno;
    if ((this_nume-c_nume)*common_deno<0) return true;
    return false;
}
bool CFraction::operator==(const CFraction &c) // 分数比较大小
{
    if (*this!=c) return false;
    return true;
}
bool CFraction::operator!=(const CFraction &c) // 分数比较大小
{
    if (*this>c || *this<c) return true;
    return false;
}
bool CFraction::operator>=(const CFraction &c) // 分数比较大小
{
    if (*this<c) return false;
    return true;
}
bool CFraction::operator<=(const CFraction &c) // 分数比较大小
{
    if (*this>c) return false;
    return true;
}
int main()
{
    CFraction x,y,s;
    cout<<"输入x: ";
    cin>>x;
    cout<<"输入y: ";
    cin>>y;
    s=+x+y;
    cout<<"+x+y="<<s<<endl;
    s=x-y;
    cout<<"x-y="<<s<<endl;
    s=x*y;
    cout<<"x*y="<<s<<endl;
    s=x/y;
    cout<<"x/y="<<s<<endl;
    cout<<"-x="<<-x<<endl;
    cout<<"+x="<<+x<<endl;
    cout<<"x的倒数: "<<~x<<endl;
    cout<<x;
    if (x>y) cout<<"大于";
    if (x<y) cout<<"小于";
    if (x==y) cout<<"等于";
    cout<<y<<endl;
    return 0;
}

运行测试;


总结;

类的非静态成员函数,返回值本身时,用return *this.

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

第13周项目-分数中的运算符重载

问题描述及代码: /* *copyright (c) 2016,烟台大学计算机学院 *All rights reserved. *文件名称:hellow.cpp *作者:田甜 *完成日期:2016年5...

第9周项目3-分数类中的运算符重载续(1)

/*。 *Copyright(c)2014,烟台大学计算机学院 *All right reserved, *文件名:test.cpp *作者:毕玉堂 *完成日期:2015年5月17日 *版本号:v1....

第八周上机实践项目3——分数类的运算符重载(1)

(1)实现分数类中的运算符重载,在分数类中可以完成分数的加减乘除(运算后再化简)、比较(6种关系)的运算。可以在第4周分数类代码的基础上开始工作。 问题及代码 /* * Copyright (c...

第八周 项目三-分数类中的运算符重载(1)

(1)实现分数类中的运算符重载,在分数类中可以完成分数的加减乘除(运算后再化简)、比较(6种关系)的运算。可以在第4周分数类代码的基础上开始工作。 /* * Copyright (c) 2015, ...

第十三周项目 1分数类中的运算符重载

/* *Copyright(c) 2016, 烟台大学计算机与控制工程学院 *All rights reserved. *文件名称:main.cpp *作 者:李德坤 *完成日期:20...

15第八周项目三——分数类中的运算符重载(1)

/*  * Copyright (c) 2014, 烟台大学计算机学院  * All rights reserved.  * 文件名称:test.cpp  * 作    者:李晓凯  * 完...

第八周项目三 分数类中的运算符重载1

/* *Copyright (c)2014,烟台大学计算机与控制工程学院 *All rights reserved. *文件名称:test.cpp *作 者:徐洪祥 *完成日期:2015年5月9...

第十三周【项目 1分数类中的运算符重载】

/* *Copyright(c) 2016, 烟台大学计算机与控制工程学院 *All rights reserved. *文件名称:main.cpp *作 者:张珩瑞 *完成日期:20...

第8周项目3(1)分数类中的运算符重载

/*。 *Copyright(c)2014,烟台大学计算机学院 *All right reserved, *文件名:test.cpp *作者:毕玉堂 *完成日期:2015年5月7日 *版本号:v1.0...

第十三周项目-项目1-分数类中的运算符重载

/*copyright(c)2016.烟台大学计算机学院 * All rights reserved, * 文件名称:text.Cpp * 作者:刘涛 * 完成日期:2016年5月21日 *...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)